. 5 PR ST SASTE R i e
— — Do-to & Array

B }3} G SHEEER A 1 IS BRATSESAS A RATE
\&

' Contents

. Generating data with DO loops
. Processing variables with arrays

=]

nnnnnnnnnnnnnnnnnnnnnnn

B 'BA LR ESIT SBUREEKS 2 IR RFFFTSAS R SRIE

' Generating Data with DO Loops

' Contents

» [ntroduction

» Constructing DO loops

» Do loop execution

» Counting do loop iterations

» Decrementing do loops

» Specifying a series of items

» Nesting do loops

» |teratively processing data that is read from a data set
» Conditionally executing do loops

» Using conditional clauses with the iterative DO statement
» Creating samples

-

B _,% I SHBEER AR 3 IS BRATSESASEE e
\&

' Introduction (1)

DO loops can execute any number of times in a single iteration of the
DATA step. Using DO loops enables you to write concise DATA steps

that are easier to change and debug.
For example, the DO loop in this program eliminates the need for 12
separate programming statements to calculate annual earnings:

data finance.earnings;
set finance.master;
Earned=0;
do count=1l to 12;
earned+ (amount+earned) * (rate/12) ;
end;
run;

B PR SR SRR AL ‘ PR TS SAS A SRR
\&

' Introduction (2)

In this section, you learn to

0 construct a DO loop to perform repetitive calculations

0 control the execution of a DO loop

3 generate multiple observations in one iteration of the DATA
step

3 construct nested DO loops.

-

B P} I SRR AR 5 ISR A IR
\&

‘ Constructing DO Loops (1)

‘ Introduction

» DO loops process a group of statements repeatedly rather than
once. This can greatly reduce the number of statements required for
a repetitive calculation. For example, these 12 Sum statements
compute a company's annual earnings from investments. Notice that
all 12 statements are identical.

) AT SR A 6 RS SAS S

ccccccccccccccccc

' Constructing DO Loops (2)

9 Example:

data finance.earnings;
set finance.master;

Earned=0;

earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;
earned+ (amount+earned) * (rate/12) ;

Run;

\

A

feseem:

St SBIEEERS

Biometr

I c Associati

0

Each Sum statement accumulates the calculated
interest earned for an investment for one month. The
variable Earned is created in the DATA step to store the
earned interest. The investment is compounded monthly,
meaning that the value of the earned interest is
cumulative. A DO loop enables you to achieve the same
results with fewer statements. In this case, the Sum
statement executes 12 times within the DO loop during
each iteration of the DATA step.

data finance.earnings;
set finance.master;
Earned=0;
do count=1 to 12;
earned+ (amount+earned) * (rate/12) ;
end;
run;

R ST SAS S R 4mTE

‘ Constructing DO Loops (3)

0 General form of do loops

» To construct a DO loop, you use the DO and END statements
along with other SAS statements.

» General form, simple iterative DO loop:

[DO index-variable=start TO stop BY increment;
SAS statements

END;
where the start, stop, and increment values

© are set upon entry into the DO loop
O cannot be changed during the processing of the DO loop
O can be numbers, variables, or SAS expressions.

[The END statement terminates the loop.
Note The value of the index variable can be changed within the loop.

B ?} SR SRR AL : PR TS SAS A SRR
\&

‘ Constructing DO Loops (4)

0 When creating a DO loop with the iterative DO statement, you must
specify an index variable. The index variable stores the value of the
current iteration of the DO loop. You can use any valid SAS name.
DO index-variable = start TO stop BY increment;
SAS statements
END;

0 Next, specify the conditions that execute the DO loop. A simple
specification contains a start value, a stop value, and an increment

value for the DO loop.

DO index-variable = start TO stop BY increment;
SAS statements

END;
@ The start value specifies the initial value of the index variable.

DO index-variable = start TO stop BY increment;

SAS statements

END;

B PR IEFE SRR A2 9 PR TSSAS I SR

&

' Constructing DO Loops (5)

9 The TO clause specifies the stop value. The stop value is the last index
value that executes the DO loop.
DO index-variable=start TO stop BY increment;
SAS statements
END;
9 The optional BY clause specifies an increment value for the index variable.
Typically, you want the DO loop to increment by 1 for each iteration. If you do
not specify a BY clause, the default increment value is 1.
DO index-variable=start TO stop BY increment;
SAS statements
END;
9 For example, the specification below increments the index variable by 1,
resulting in quiz values of 1, 2, 3, 4, and 5:
do quiz=1 to 5;
9 By contrast, the following specification increments the index variable by 2,
resulting in rows values of 2, 4, 6, 8, 10, and 12:
do rows=2 to 12 by 2;

-

B 13) I SKEEERAS 10 ISERFSESAS B R
\&

‘ DO Loop Execution (1)

0 Using the form of the DO loop that was just presented,
let's see how the DO loop executes in the DATA step. This
example calculates how much interest was earned each
month for a one-year investment.

» Example:

data finance.earnings;
Amount=1000;
Rate=.075/12;
do month=1 to 12;
Earned+ (amount+earned) * (rate) ;
end;

run,

=]

nnnnnnnnnnnnnnnnnnnnn

B 'BA LR ESIT SBUREEKS i IR RFFFTSAS R SRIE

‘ DO Loop Execution (2)

0 This DATA step does not read data from an external
source. When submitted, it compiles and then executes
only once to generate data. During compilation, the
program data vector is created for the Finance.Earnings
data set.

Frogram Data Vector

N | Amount Rate month | Earned

0 When the DATA step executes, the values of Amount
and Rate are assigned.

Frogram Data Wector

| Amount Rate month | Earned
1 looa | 0.00625

B Q G SHEEER A 12 IS BRRSESASE B2
\&

‘ DO Loop Execution (3)

0 Next, the DO loop executes. During each execution of
the DO loop, the value of Earned is calculated and is added
to its previous value; then the value of month is

iIncremented. On the twelfth execution of the DO loop, the
program data vector looks like this:

Program Data Yectar

N_| Amount Rate month | Earned
1 looo| 0.006825 12| 7?7.6326

B\ it Shmemnas &

R FZSAS D R IRTE
\&

‘ DO Loop Execution (4)

§ After the twelfth execution of the DO loop, the value of month is
Incremented to 13. Because 13 exceeds the stop value of the iterative
DO statement, the DO loop stops executing, and processing continues
to the next DATA step statement. The end of the DATA step is reached,
the values are written to the Finance. Earnings data set, and in this
example, the DATA step ends. Only one observation is written to the

data set.
SAS Data Set Finance.Earnings

Amount Rate month Earned

1000 | 0.00625 13 77.6326

Notice that the index variable month is also stored in the data set. In most cases,
the index variable is needed only for processing the DO loop and can be dropped

from the data set. -

B P} I SRR AR 14 ISR A IR
\&

‘ Counting do loop iterations (1)

0 Counting iterations of DO loops

» |n some cases, it is useful to create an index variable to count and
store the number of iterations in the DO loop. Then you can drop the
Index variable from the data set.

[Example: SAS Data Set Work.Earn

data work.earn (drop=counter) ; Value Interest Year
Value=2000;

do counter=1 to 20;

8495.70 592.723 20

Interest=value*.075;
! The Sum statement Year+1 accumulates

valuetinterest; the number of iterations of the DO loop

Year+l; and stores thetotal in the new variable Year. The
end; final value of Year is then stored in the data set,
run, whereas the index variable counter is dropped.
The data set has one observation.
B PR SR SRR AL 15 PR TS SAS A SRR

&

‘ Counting do loop iterations (2)

9 Explicit OUTPUT statements

» To create an observation for each iteration of the DO loop, place
an OUTPUT statement inside the loop. By default, every DATA step
contains an implicit OUTPUT statement at the end of the step. But
placing an explicit OUTPUT statement in a DATA step overrides
automatic output, causing SAS to add an observation to the data set
only when the explicit OUTPUT statement is executed.

» The previous example created one observation because it used
automatic output at the end of the DATA step. In the following
example, the OUTPUT statement overrides automatic output, so the
DATA step writes 20 observations.

B\ it Shmemnas g ISR SEAST BT

' Counting do loop iterations (3)

§ Explicit OUTPUT statements

» Example:
data work.earn;

Value=2000;

do Year=1l to 20;
Interest=value*.075;
value+interest;
output;

end;

run,

N
&

fome ric ssociation

17

SAS Data Set Work.Earn
(Partial Listing)
Value Year Interest
2150.00 1 150.000
2311.25 2 |161.250
2484.59 3 173.344
2670.94 4 |186.345
2871.26 5 |200.320
3086.60 6 215.344
3318.10 7 231.495
3566.96 8 | 248.857
8495.70 20 592.723
L |
s R ST SASTE R EmAE

' Decrementing DO loops

0 Decrementing DO loops

» You can decrement a DO loop's index variable by specifying a
negative value for the BY clause. For example, the specification in
this iterative DO statement decreases the index variable by 1,
resulting in values of 5, 4, 3, 2, and 1.

DO index-variable=5 to 1 by -1;
SAS statements
END;
» \When you use a negative BY clause value, the start value must

always be greater than the stop value in order to decrease the index
variable during each iteration.

DO index-variable=5 to 1 by -1,
SAS statements
END;

-

Bp)\ dSemsiit SuiR e s 18 RS SAS S
Bp dtsEmit SsEEERas

' Specifying a series of items (1)

0 Specifying a series of items

» You can also specify how many times a DO loop executes by
listing items in a series.

[General form, DO loop with a variable list:

DO index-variable=valuel, value2, value3...;
SAS statements

END;

where values can be character or numeric.

ccccccccccccccccc

) AT SR A 19 RS SAS S

‘ Specifying a series of items (2)

‘ When the DO loop executes, it executes once for each item in the series. The index
variable equals the value of the current item. You must use commas to separate items in
the series.

‘ To list items in a series, you must specify either all numeric values
DO index-variable=2,5,9,13,27;
SAS statements
END;
‘ all character values, with each value enclosed in quotation marks
DO index-variable='MON',6 'TUE','WED','THR','FRI';
SAS statements
END;
‘ all variable names—the index variable takes on the values of the specified variables.
DO index-variable=win,place,show;
SAS statements
END;
O Variable names must represent either all numeric or all character values. Do not
enclose variable names in quotation marks.

-

B PR SR SRR AL 20 PR TS SAS A SRR
\&

' Nesting DO Loops (1)

[Iterative DO statements can be executed within a DO loop. Putting a DO loop within a DO loop is
called nesting.

do i=1 to 20;
SAS statements
do j=1 to 10;
SAS statements
end;
SAS statements
end;

[The following DATA step computes the value of a one-year investment that earns 7.5% annual
interest, compounded monthly.

data work.earn;
Capital=2000;
do month=1 to 12;
Interest=capital*(.075/12) ;
capital+interest;
end;
run;

B IR SRR S 21 SRS SAS A e

‘ Nesting DO Loops (2)

9 Let's assume the same amount of capital is to be added to the
Investment each year for 20 years. The new program must perform the
calculation for each month during each of the 20 years. To do

this, you can include the monthly calculations within another DO loop

that executes 20 times.

data work.earn;
do year=1 to 20;
Capital+2000;
do month=1 to 12;
Interest=capital*(.075/12);
capital+interest;
end;
end;
run;

B N dbsemgit SuEempas 2 PR TSSAS I SR

—B/:\ Beijing Biometric Associa tion

‘ Nesting DO Loops (3)

9 During each iteration of the outside DO loop, an
additional 2,000 is added to the capital, and the nested DO
loop executes 12 times.

data work.earn;
do year=1 to 20;
Capital+2000;
do month=1 to 12;
Interest=capital* (.075/12);

capital+interest;
end;
end;
run;
Note: It is easier to manage nested DO loops if you indent the statements in
each DO loop as shown above. -
B P} IbSEngIt SR EER AR 23 HS PR RS SASES R RS

lteratively Processing Data That Is Read
from a Data Set (1)

0 So far you have seen examples of DATA steps that use
DO loops to generate one or more observations from one
iteration of the DATA step. Now let's look at a DATA step
that reads a data set to compute the value of a new

variable.

‘ The SAS data set Finance.CDRates, shown below,
contains interest rates for certificates of deposit (CDs) that
are available from several institutions.

B @ I SRR AR 24 PR TS SAS A SRR
\&

lteratively Processing Data That Is Read
from a Data Set (2)

SAS Data Set Finance.CDRates

Institution Rate Years
MBMNA America 0.0817 5
Metropolitan Bank 0.0814 3
Standard Pacific 0.0806 4

9 Suppose you want to compare how much each CD will earn at maturity with
an investment of $5,000. The DATA step below creates a new data set,
Work.Compare, that contains the added variable, Investment.

data work.compare (drop=1i) ;
set finance.cdrates;
Investment=5000;
do i=1 to years;
investment+rate*investment;
end;

run,

B PR SR SRR AL 25 PR TS SAS A SRR
\&

lteratively Processing Data That Is Read
from a Data Set (3)

g The index variable is used only to execute the DO loop, so it is
dropped from the new data set. Notice that the data set variable Years
IS used as the stop value in the iterative DO statement. As a result, the
DO loop executes the number of times that are specified by the current
value of Years. During the first iteration of the DATA step, for example,
the DO loop executes five times.
g During each iteration of the DATA step,

» an observation is read from Finance.CDRates

» the value 5000 is assigned to the variable Investment

» the DO loop executes, based on the current value of Years

» the value of Investment is computed (each time that the DO loop
executes), using the current value of Rate.

B 13} I SRR AR 26 ISR A IR
\&

lteratively Processing Data That Is Read
from a Data Set (4)

§ At the bottom of the DATA step, the first observation is written to the
Work.Compare data set. Control returns to the top of the DATA step,
and the next observation is read from Finance.CDRates. These steps
are repeated for each observation in Finance.CDRates. The resulting
data set contains the computed values of Investment for all
observations that have been read from Finance.CDRates.

SAS Data Set Work.Compare
Institution Rate Years Investment
MBNA America 0.0817 5 7404.64
Metropolitan Bank 0.0814 3 6323.09
Standard Pacific 0.0806 4 6817.57
-
By N 'BA IEREMFIT SEREERAR 2 G R AT SAS TR R AR TE

' Conditionally Executing DO Loops (1)

9 The iterative DO statement requires that you specify the number of
iterations for the DO loop. However, there are times when you want to
execute a DO loop until a condition is reached or while a condition
exists, but you don't know how many iterations are needed.

Suppose you want to calculate the number of years that are required
for an investment to reach $50,000. In the DATA step below, using an
iterative DO statement is inappropriate because you are trying to
determine the number of iterations required for Capital to reach
$50,000.

data work.invest;
do year=1 to ? ;
Capital+2000;
capital+capital*.10;
end;

run,

Bp)\ dSemsiit SuiR e s 2 RS SAS S

-/‘\ ccccccccccccccccc

' Conditionally Executing DO Loops (2)

‘ Using the DO UNTIL statement

» The DO UNTIL statement executes a DO loop until the
expression is true.

[General form, DO UNTIL statement:
DO UNTIL (expression);
more SAS statements
END;
where expression is a valid SAS expression enclosed in parentheses.

ccccccccccccccccc

) AT SR A 2 RS SAS S

‘ Conditionally Executing DO Loops (3)

0 The expression is not evaluated until the bottom of the loop, so a DO
UNTIL loop always executes at least once. When the expression is
evaluated as true, the DO loop is not executed again.

Assume you want to know how many years it will take to earn
$50,000 if you deposit $2,000 each year into an account that earns
10% interest. The DATA step that follows uses a DO UNTIL statement
to perform the calculation until the value is reached. Each iteration of
the DO loop represents one year of earning.

data work.invest;
do until (Capital>=50000) ;
capital+2000;
capital+capital*.10;
Year+l;
end;
run;

Bp)\ dSemsiit SuiR e s 3 RS SAS S

-/‘\ ccccccccccccccccc

' Conditionally Executing DO Loops (4)

9 During each iteration of the DO loop,
» 2000 is added to the value of Capital to reflect the annual deposit

of $2,000

» the value of Capital with 10% interest is calculated

» the value of Year is incremented by 1.

Because there is no index variable in the DO UNTIL statement, the variable
Year is created in a Sum statement to count the number of iterations of the DO
loop. This program produces a data set that contains the single observation
shown below. To accumulate more than $50,000 in capital requires 13 years
(and 13 iterations of the DO l00p). gas pata Set Work.Invest

Capital

Year

53949.97

Bp)\ dSemsiit SuiR e s 3

-/‘\ ccccccccccccccccc

13

R ST SAS S R 4mTE

‘ Conditionally Executing DO Loops (5)

‘ Using the DO WHILE statement

» Like the DO UNTIL statement, the DO WHILE statement executes
DO loops conditionally. You can use the DO WHILE statement to
execute a DO loop while the expression is true.

[General form, DO WHILE statement:
DO WHILE (expression);
more SAS statements
END;
where expression is a valid SAS expression enclosed in parentheses.

ccccccccccccccccc

) AT SR A 2 RS SAS S

' Conditionally Executing DO Loops (6)

§ An important difference between the DO UNTIL and DO WHILE
statements is that the DO WHILE expression is evaluated at the top of
the DO loop. If the expression is false the first time it is evaluated, then
the DO loop never executes. For example, in the following program, if
the value of Capital is less than 50,000, the DO loop does not execute.

data work.invest;
do while (Capital>=50000) ;

capital+2000;
capital+capital*.10;
Year+1;
end;
run;
-
Bp)\ dSemsiit SuiR e s 3 ISR SESASES LA

-/‘\ ccccccccccccccccc

Using Conditional Clauses with the lterative
DO Statement (1)

9 You have seen how the DO WHILE and DO UNTIL
statements enable you to execute statements conditionally
and how the iterative DO statement enables you to execute
statements a set number of times, unconditionally.

» DO WHILE(expression);
» DO UNTIL(expression);
» DO index-variable=start TO stop BY increment;

B 13} I SRR AR a4 ISR A IR

Using Conditional Clauses with the lterative
DO Statement (2)

' Now let's look at a form of the iterative DO statement
that combines features of both conditional and
unconditional execution of DO loops.

In this DATA step, the DO UNTIL statement determines

how many years it takes (13) for an investment to reach
$50,000.

data work.invest;
do until (Capital>=50000) ;

SAS Data Set Work.Invest
Year+l; .
capital+2000; Capital Year
capital+capital*.10; 53949.97 13
end;
run;
B\ ecmsit SyEmmnas 35 PR SESAS B R 2

Using Conditional Clauses with the lterative
DO Statement (3)

§ Suppose you also want to limit the number of years that you invest
your capital to 10 years. You can add the UNTIL or WHILE expression
to an iterative DO statement to further control the number of iterations.
This iterative DO statement enables you to execute the DO loop until

Capital is greater than or equal to 50000 or until the DO loop executes
10 times, whichever occurs first.

data work.invest (drop=i) ;
do i=1 to 10 until (Capital>=50000) ;

Year+l;
capital+2000; SAS Data Set Work.Invest
capital+capital*.10; Capital Year
end; 35062.33 |10
run,
) ib‘“ﬁ%ﬁﬁ'—:;‘&ﬁ%ﬂﬁ £ 36 R FZSAS D R IRTE

&

Using Conditional Clauses with the lterative
DO Statement (4)

0 In this case, the DO loop stops executing after 10
iterations, and the value of Capital never reaches 50000. If
you increase the amount added to Capital each year to
4000, the DO loop stops executing after the eighth iteration
when the value of Capital exceeds 50000.

data work.invest (drop=i) ;
do i=1 to 10 until (Capital>=50000) ;

Year+l;
capital+4000; SAS Data Set Work.Invest
capital+capital*.10; Capital Year
end; 50317.91 |8
run;
B N dbseemssit SHmeme s 37 I A S

BA S Tra eiometic Associaion

Using Conditional Clauses with the lterative
DO Statement (5)

» The UNTIL and WHILE specifications in an iterative DO statement
function similarly to the DO UNTIL and DO WHILE statements. Both
statements require a valid SAS expression enclosed in parentheses.
[UNTIL(expression);
[DO index-variable=start TO stop BY increment
WHILE (expression);

» The UNTIL expression is evaluated at the bottom of the DO loop,
so the DO loop always executes at least once. The WHILE
expression is evaluated before the execution of the DO loop. So, if
the condition is not true, the DO loop never executes.

-

B N dbseemssit SHmeme s 3 RS SAS S

‘ Creating Samples (1)

g Because it performs iterative processing, a DO loop provides an
easy way to draw sample observations from a data set. For example,
suppose you would like to sample every tenth observation of the 5,000
observations in Factory.Widgets. Start with a simple DATA step:

data work.subset;
set factory.widgets;

run,

g You can create the sample data set by enclosing the SET statement
In a DO loop. Use the start, stop, and increment values to select every
tenth observation of the 5,000. Add the POINT= option to the SET
statement, setting the POINT= option equal to the index variable that is
used in the DO loop.

B 13} I SKEEERAS & PR BSESAS B
\&

‘ Creating Samples (2)

0 Example:

data work.subset;
do sample=10 to 5000 by 10;
set factory.widgets point=sample;
end;

run,

® Remember that, in order to prevent continuous DATA step looping,
you need to add a STOP statement when using the POINT= option.
Then, because the STOP statement prevents the output of observations
at the end of the DATA step, you also need to add an OUTPUT
statement. Place the statement inside the DO loop in order to output
each observation that is selected. (If the OUTPUT statement were
placed after the DO loop, only the last observation would be written.)

Bp)\ dSemsiit SuiR e s 4 RS SAS S
Bp dtsEmit SsEEERas

‘ Creating Samples (3)

data work.subset;
do sample=10 to 5000 by 10;
set factory.widgets point=sample;
output;
end;
stop;

run,

§ When the program runs, the DATA step reads the observations that
are identified by the POINT=option in Factory.Widgets. The values of
the POINT= option are provided by the DO loop, which starts at 10 and
goes to 5,000 in increments of 10. The data set Work.Subset contains
500 observations.

-

B N b5 SERammea 4 SRR ST SAS TS e

nnnnnnnnnnnnnnnnnnnnn

X

' Processing Variables with Arrays

' Contents

» Introduction

» Defining an array

» Variable list as array elements

» Array reference

» The DIM function

» Creating variables with the ARRAY statement
» Assigning initial values to arrays

» Creating temporary array elements

» Multidimensional arrays

» Referencing elements of a two-dimensional array
» Rotating data sets

» Applications — examples -
B _,% MG SHIEEER A A 42 BT STSASES R e

&

‘ Introduction (1)

An array Is a temporary grouping of variables under a
single name. This can reduce the number of statements
that are needed to process variables and can simplify the
maintenance of DATA step programs.

In DATA step programming, you often need to perform the
same action on more than one variable. Although you can
process variables individually, it is easier to handle them as
a group. You can do this by using array processing.

B 13} I SRR AR @ ISR A IR

‘ Introduction (2)

For example, the program below eliminates the need for
365 separate programming statements to convert the daily
temperature from Fahrenheit to Celsius for the year:

data work.report (drop=i) ;
set master. temps;
array daytemp{365} dayl-day365;
do i=1 to 365;
daytemp{i}=5* (daytemp{i}-32)/9;
end;
run;

B N dbsemgit SuEempas 4 SRR ST SAS TS e

nnnnnnnnnnnnnnnnnnnnn

X

‘ Introduction (3)

0 One reason for using an array
--- reduce the number of statements:

data work.report; With array:.
set master. temps;

mon=5* (mon-32)/9;
tue=5* (tue-32)/9;
wed=5* (wed-32)/9;
thr=5* (thr-32)/9;

data work.report (drop=i) ;
set master. temps;
array wkday{7} mon tue wed thr fri sat sun;

fri=5* (£ri-32)/9; do i=1 to 7;
sat=5* (sat—32) /9, wkday{1}=5* (WkdaY{l}—32) /9,’
sun=5%* (sun-32)/9; end;

run; run;

The same calculation is Use fewer statements

performed on each variable. Easier to be modified or corrected

-

B PR IR SRR AL s RS ISASE R
\&

' Defining an Array (1)

' General form of an array
ARRAY array-name{dimension} <elements>;

f ! !

array daytemp{365} dayl-day365;

[Arrays exist only for the duration of the DATA step. They do not
become part of the output data set.

[Do not give an array the same name as a variable in the same DATA
step.
[Array elements must be either all numeric or all character.

[If no elements are listed, new variables will be created with default
names.

[You cannot use array names in LABEL, FORMAT, DROP, KEEP, or
LENGTH statements.

B 13) SR SRR AL ~ PR TS SAS A SRR
\&

‘ Defining an Array (2)

' Dimension

» The dimension describes the number and arrangement of
elements in the array. There are several ways to specify the
dimension:

[the number of array elements
array sales{4} gtrl gqtr2 qtr3 gtr4;

[arange of values
array sales{96:99} totals96 totals97 totals98 totals99;

[using (*), the dimension is determined by counting the number of

elements.
array sales{*} gqtrl gtr2 qtr3 gtr4;

B PR SR SRR AL a7 PR TS SAS A SRR
\&

‘ Defining an Array (3)

‘ Elements
» Specifying array elements

[list each variable name
array sales{4} gtrl gqtr2 qtr3 gtr4;

[specify array elements as a variable list.
array sales{4} gtrl-qtr4;

O Let's look more closely at array elements that are specified as variable
lists. It has several forms.

-

B PR SR SRR AL 48 PR TS SAS A SRR
\&

‘ Variable List as array Elements

0 a numbered range of variables: vari-varn
array sales{4} gtrl-qtr4;

» must have the same name except for the last character
» the last character must be numeric
» must be numbered consecutively.

® 2l numeric variables: _NUMERIC _

array sales{*} numeric ;

® 2l character variables: _CHARACTER _

array sales{*} character_ ;

O 2l variables: arr

array sales{*} all ;

-

B PR SR SRR AL 49 PR TS SAS A SRR
\&

‘ Array Reference (1)

‘ Overview

» \When you define an array in a DATA step, an index value is
assigned to each element. During execution, you can use an array
reference to perform actions on specific array elements. When used
iIn a DO loop, for example, the index variable of the iterative DO
statement can reference each element of the array.

) AT SR A 50 RS SAS S

ccccccccccccccccc

‘ Array Reference (2)

‘ General form of ARRAY reference:
array-name{index value}

where index value
» |S enclosed in parentheses, braces, or brackets

» specifies an integer, a numeric variable, or a SAS
numeric expression

» IS within the lower and upper bounds of the dimension
of the array.

Bp)\ dSemsiit SuiR e s 51 RS SAS S
Bp dtsEmit SsEEERas

' Array Reference (3)

§ Examples
» reference the elements of an array by an index value

data work.report (drop=i) ;

set master. temps;
array wkday{7} mon tue wed thr fri sat sun;

do i=1 to 7;
if wkday{i}>95 then output;
end;
run;

Typically, arrays are used with DO loops.

» The index values are assigned in the order of the array elements.

1 2 3 4
array quarter{4} jan apr jul oct;
do i=1 to 4;

YearGoal=quarter{i}*1.2;
end;

B P} SR SRR AL 52 PR TS SAS A SRR
\&

Array Reference (4)

@ Compilation and execution (1)

» An example — Kilograms to be converted to pounds:

SAS Data Set Hrd.Fitclass

data hrd.convert;
set hrd.fitclass;
array wt{6} weightl-weight6;
do i=1 to 6;
wt{i}=wt{i}*2.2046;

end;
run;
B _,a IS SREEERAS 53

&

Name Weight1 Weight2 Weight3 Weight4 Weight5 Weight6

Alicia 69.6 68.9 68.8 67.4 66.0 66.2
Betsy 52.6 52.6 51.7 50.4 49.8 491
Brenda 68.6 67.6 67.0 66.4 65.8 65.2
Carl 67.6 66.6 66.0 65.4 64.8 64.2
Carmela 63.6 62.5 61.9 61.4 60.8 58.2
David 70.6 69.8 69.2 68.4 67.8 67.0

R ST SAS S R 4mTE

‘ Array Reference (5)

0 Compilation and execution (2)
» An example — Kilograms to be converted to pounds:

Frogram Data Wectar

H| Mame |[Weight1 | Weight2 | Weight3 | Weight4 | Weight5 | Weightt6 | i

[The program data vector is created for the Hrd.Convert data set.
[The index values of the array elements are assigned.

[Note that the array name and the array references are not included in the program data
vector.

Frogram Data Yectar

wiil 1} witf 2} wit{ 3} wit{ <} wit{ 3} wit{ 5}
H| Hame | Weight1 | Weight2 | Weight3 | Weightd | Weight5 | Weightb
l| Alicia 69.6 65.9 65.8 67.4 66,0 66,2

[The first observation is read into the program data vector.

[Because the ARRAY statement is a compile-time only statement, it is ignored during
execution. The DO loop is executed next.

B\ it Shmemnas 2

&

R ST SAS S R 4mTE

‘ Array Reference (6)

0 Compilation and execution (3)

» An example — Kilograms to be converted to pounds:

[Because wt {1} refers to the first array element, Weight1, the value of

Weight1l is converted from kilograms to pounds.

Frogram Data Wectaor

witf T}

witf 2}

witf 3}

it <}

witf O}

w6}

Hame

Weight1

Weight2?

Weight3

Weight4

Weights

Weight6

1

Alicia

153.4

a5.9

65,8

[Continues its DO loop iterations,

[The index variable i is changed from 1 to 6, causing Weight2 through
Weight6 to receive new values in the program data vector, as shown below.

Program Data vector

a7.d

a6.0

] T

\
B i
<4

\\\\\

55

wit(f) wilZ) wit () wit (<) wi{J) wit ()
H| Name |Weight1 | Weight2 | Weight3 | Weightd | Weight5 | Weightt
1| Alicia 153.4 151.9 151.7 145.6 145.5 145.9

R ST SAS S R 4mTE

‘ The DIM Function

You can also use the DIM function to return the number of elements in
the array.

When you use the DIM function, you do not have to re-specify the stop
value of a DO statement if you change the dimension of the array.

' General form of DIM function:
DIM(array-name)
array wt{*} weightl-weight6;
do i=1 to dim(wt);
wt{i}=wt{i}*2.2046;
end;

» dim (wt) returns a value of 6.
» array-name specifies the array.

B PR SR SRR AL 56 PR TS SAS A SRR
\&

‘ Quiz

Which DO statement would not process all the elements In

the factors array shown below?
array factors{*} age height weight bloodpr;

a. do i=1 to dim(factors);
b. do i=1 to dim(*);

c.do i=1,2,3,4;

d. do i=1 to 4;

» Correct answer: b

[To process all the elements in an array, you can either specify the array
dimension or use the DIM function with the array name as the argument.

-

B N b5 SERammea 57 SRR ST SAS TS e

nnnnnnnnnnnnnnnnnnnnn

X

' Creating Variables with Array (1)

‘ Overview

» You can also create variables in an ARRAY statement by omitting
the array elements from the statement.

» Because you are not referencing existing variables, SAS
automatically creates the variables for you and assigns default
names to them.

ccccccccccccccccc

) AT SR A 58 RS SAS S

' Creating Variables with Array (2)

9 General form (1)

» General form of ARRAY statement to create new variables:
ARRAY array-name{dimension};

[where array-name specifies the name of the array.

[dimension describes the number and arrangement of array elements. The
default dimension is one.

ccccccccccccccccc

) AT SR A 59 RS SAS S

‘ Creating Variables with Array (3)

9 General form (2)

In creating variables in array statement, you can

» Creates default variable names

[concatenating the array name and the numbers 1, 2, 3, and so on, up
to the array dimension
array WgtDiff{5};
Variables created: WgtDiffl WgtDiff2 WgtDiff3 WgtDiff4 WgtDiff5

» Specify individual variable names

[list each name as an element of the array.

array WgtDiff{5} Octl2 Octl9 Oct26 Nov02 Nov09;
Variables created: Octl2 Octl9 Oct26 Nov02 Nov09

B 13} I SRR AR 60 ISR A IR
\&

‘ Creating Variables with Array (4)

9 General form (3)
In creating variables in array statement, you can

» Creating arrays of character variables

[To create an array of character variables, add a dollar sign ($) after
the array dimension.

array firstname{5} $;

[By default, all character variables that are created in an ARRAY
statement are assigned a length of 8. You can assign your own length
by specifying the length after the dollar sign..
array firstname{5} $ 24;

Bp)\ dSemsiit SuiR e s 61 RS SAS S
Bp dtsEmit SsEEERas

0 Example
» Create variables that contain

this

B

&

weekly difference

[group the variables Weight1
through Weight6 into an
array

[create the new variables to
store the differences.

— use an additional ARRAY

statement without elements
to create the new variables.

[use a DO loop to calculate
the differences between
each of the recorded weights.

LSS S EER AR

jing ometric Association

‘ Creating Variables with Array (5)

oA5S Data Set Hrd. Convert

Name |Weightl Weight2 Weight3 Weight4 | Weightd Weighto
alicia 153.4 151.9 151.7 148.6 145.5 1459
Betsy 116.0 116.0 114.0 111.1 109.8 108.2
Brenda 151.2 149.0 147.7 146.4 145.1 143.7
Carl 149.0 146.8 145.5 144,2 142.9 141.5
Carmela 140.2 137.8 136.5 135.4 134.0 128.3
data hrd.diff;

set hrd.convert;

array wt{6} weightl-weight6;

array WgtDiff{5};

do i=1 to 5;

wgtdiff{i}=wt{i+l}-wt{i};

end;
2SRy SAS Data Set Hrd. Diff
Name WaqgtDiff1 WqgtDiff2 WqgtDiff3 WqtDiff4 wWqgtDiff5
slicia | -1.54322 | -0.22046 | -2.02644 -3,08644 0,44092
Betsy 0.00000) -1.92414 -2.86598 | -1.32276 | -1.54322
Brenda | -2.20460 -1.32276 | -1.32276 | -1.32276 | -1.32276
(A portion of the resulting data set)
62 IR 5T SASES R dmie

0 Compilation

» During the compilation of the DATA step, the variables that this
ARRAY statement creates are added to the vector.

Frogram Data Wector

‘ Creating Variables with Array (6)

Mame

Weight1

Weight?

Weight3

Weightd

Weighta | Weight

» Be careful not to confuse the array references WgtDi£f£{1} through
WgtDiff {5} (note the braces) with the variable names WgtDiffl
through wgtDi££5. Below shows the relationship.

B D\

B/
<4

WD T WWOtDi 2y WatDiff 2 WiotDiff &) WotDiff} 5

W LD

WitDifF2

Wit Diff3

Wit Dirr4

WitDiff5

SR e e

63

-

R ST SAS S R 4mTE

' Assigning Initial Values to Array (1)

‘ General form

» Assign initial values to elements of an array when you define the
array.

array goal{4} gl g2 g3 g4 (initial values);

array goal{4} gl g2 g3 g4 (9000 9300 9600 9900);

[place the values after the array elements

[specify one initial value for each corresponding array element
[separate each value with a comma or blank

[enclose the initial values in parentheses.

B 13) SR SRR AL o4 PR TS SAS A SRR
\&

‘ Assigning Initial Values to Array (2)

9 Examples (1)

» Enclose each character value in quotation marks.
array col{3} $ colorl-color3 ('red', 'green', 'blue');

» Assign initial values without specifying array element.
array Var{4} (1 2 3 4);

[It creates the variables Varl, Var2, Var3, and Var4, and assigns
them initial values of 1, 2, 3, and 4.

B PR IR SRR AL és RS ISASE R
\&

‘ Assigning Initial Values to Array (3)

0 Examples (2)

» To compare the actual sales figures to the goals. The actual sales are
stored in Finance.Qsales while the goals are not recorded in.

data finance.report (drop=i) ;
set finance.gsales;
array sale{4} salesl-sales4;
array Goal{4} (9000 9300 9600 9900) ;
array Achieved{4};
do i=1 to 4;
achieved{i}=100*sale{i}/goal{i};

end;
run;
oAS Data Set Finance. Report
SalesRep Salesl Sales2 Sales3 Sales4 Goall Goal? Goal3 | Goal4 Achievedl Achieved?2 Achieved3 Achieved4
Britt 8400 g200 03200 Q200 9000 | 9300 9500, 9900 03.3332 04,624 06.875 08,990
Fruchten aLan 03200 Q200 8900 9000 | 9300 9800, 9900 10E5.556 100.000 102.02832 29,8999
Goodyear Q1t0 o200 Q550 11000 | 9000 92300| 9600 99200 101.667 08,925 100.521 111.111

Variables to which initial values are assigned in an ARRAY statement
are automatically retained. -

66 SR FTSASER R ts

B\ it Shmemnas
&

' Creating Temporary Array Elements

® How to eliminate Goall through Goal4 as they are not needed in
the previous example? Here Temporary Array Elements comes in.

data finance.report;
set finance.gsales;
array sale{4} salesl-sales4;
array goal{4} _temporary (9000 9300 9600 9900);
array Achieved{4};
do i=1 to 4;
achieved{i}=100*sale{i}/goal{i};
end;
run;

AL Data et Finance Report

Bp)\ st Suemmnas

ometric Associa tion

<4

SalesRep Salesl Sales? Sales3 Sales4 Achievedl Achieved2 Achieved3 Achieved4

Britt g400| 82800, 9300, 9200 03,333 a4.624 06,875 08,990

Fruchten a500 Q300 800 2900 105.556 100.000 102.083 20,899

Goodyear 89150 Q0200 9650 | 11000 101.667 93.925 100,521 111,111
67

R ST SAS S R 4mTE

‘ Multidimensional Arrays (1)

§ To define a multidimensional array, you specify the number of

elements in each dimension, separated by a comma. columns
¥l | w2 | x3 | x4

array new{3,4} x1-x12;
rowes | x5 | xB | w7 | x0

¥ | w10 | #11 | %12

» The first dimension in the ARRAY statement specifies the number of rows.
» The second dimension specifies the number of columns.

' Reference any element of the array by specifying the two dimensions.

array new{3,4} x1-x12; ¥l | ¥2 | w3 | ud
new{2,3}=0; ¥a | xb | ®S | D
pri= I L B

B PR SR SRR AL c8 PR TS SAS A SRR
\&

‘ Multidimensional Arrays (2)

§ When you define a two-dimensional array, the array elements are
grouped in the order in which they are listed in the ARRAY statement.

array new{3,4} xl1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12;

¥l | %2 x3 | wd
» The array elements x1 through x4 can be o e e
thought of as the first row of the table.

#9 w10 | w11 w12

» The elements x5 through =8 become the il | %2 43 | xd
second row of the table, and so on. £ | 58| A | s
pi= S LN A
Bﬁ} EsEgt SBEREERA S 6 B STSASE RS
&

‘Referencing Elements of a Two-Dimensional Array (1)

0 Multidimensional arrays are typically used with nested
DO loops.

0 If a DO loop processes a two dimensional array, you can
reference any element within the array by specifying the
two dimensions.

B P} I SRR AR 70 ISR A IR
\&

‘Referencing Elements of a Two-Dimensional Array (2)

An example (1):

0 A company's sales
figures are stored by
month (Finance.Monthly).
Your task is to generate
a new data set of
guarterly sales rather
than monthly sales.

By) domisnmemnas
\&

Raw data set:
Sales by month

Task:

Description of Finance.Monthly

Yariable Type Length

YYear

mMonthl
Month2
Month3
mMonth4
mMonths
Monthe
Month?
Months
rMontha

MLIm

MLIm

MM

ALIm

MLIm

MLIm

MM

ALIm

MLIm

MLIm

Monthld num
Monthll num
Monthl2 nurm

[O T Y o Y o o N o N o A o A v A v B v n

Sales by quarter

=45 Data Set Finance. Cluarters (Partial Listing)

Year

Qtrl

Qtr2

Qtr3

Qtr4

1929

69100

G4400

69200

71800

1990

73100

72000

83200

22800

1991

73400

21800

a5200

avann

7

R ST SAS S R 4mTE

'Referencing Elements of a Two-Dimensional Array (3)

An example (2):
Data inance.quarters (drop=i j);
1. Defining the array m{4,3} puts °¢¢ finance-monthlys
. array m{4,3} monthl-monthl2;
the variables Month1l through

array Qtr{4};

Month12 into four groups of do i=1 to 4;
three months (yearly quarters). qtr{i}=0;
do j=1 to 3;
Table Hepresentation of m Array gtr{i}+m{i,j};
Moaonth1 | Month2 | Month3
end;
Monthd | MaonthS | Monthb
end;
Month? | Manthd | hMonthS
run;
Wanth10 | Month11 | Month12
J\\ IREMSI SRIEEER AR 72 PR FFSESAS B e

‘Referencing Elements of a Two-Dimensional Array (4)

An example (3):

Data inance.quarters (drop=i j);

set finance.monthly;

2' Deﬁning the array Qtr{4} array m{4,3} monthl-monthl2;
creates the numeric variables array Qtr{4};
Qtrl, Qtr2, Qtr3, Qtr4, | L%

which will be used to sumthe | & .
sales for each quarter. qtr{i}+m{i,j};
end;
end;
run,
Bp A B IS SRR AS 78 MR SESAS TS RbtE

‘Referencing Elements of a Two-Dimensional Array (5)

An example (4):

Data inance.quarters (drop=i j);
set finance.monthly;
3. A nested DO loop is used to array m{4,3} monthl-monthl2;
reference the values of the array Qtr{4};
variables Monthl through do imh Fe
Month12 and to calculate the ::r;::o .
values of Qtrl through qtr{i}+m{i,j};
Qtr4 end;
end;
zun;

To see how the nested DO loop processes these arrays, let's examine the
execution of this DATA step.

Bp)\ dSemsiit SuiR e s 7 RS SAS S

-/‘\ ccccccccccccccccc

‘Referencing Elements of a Two-Dimensional Array (6)

Steps of Execution (1):

0 When this DATA step is compiled, the vector is created.
' The PDV contains the variables Year, Monthl through
Month12, and the new variables Qtrl through Qtr4.

Frogram Data Vector

M | Year | Month1 | Month2 | Month3 Otr1l Qtr2 | a3 Qtrd | i|j

'.-ll'

3y

e ——

0 In the first execution of the DATA step, the 1st observation
of Finance.Monthly are read into the program data vector.

Fragram Data Yectar

M | Year | Month1|Month2 | Month3 atr1 Qatr2 | Qtr3 akrd [0]
11939 23000 21500 24600 *flvt] - .] 1

v

B _BR G SHEEER A 75 IS BRATSESAS A RATE
\&

‘Referencing Elements of a Two-Dimensional Array (7)

Steps of Execution (2):

0 During the first iteration of the nested DO loop, the value
of Month1, which is referenced by m{i,j}, Is added to
Qtrl.

Frogram Data Yector

M| ¥Year | Month1| Month2 | Month3 atr1 atr2 Qir3 omrd (1]
111989 | 23000 21500 24600 '\ 23000 -] - 111

e ——

.l'-u-

0 During the second iteration of the nested DO loop, the
value of Month2, which is referenced by m{i, j}, IS
added to Qtrl.

FProgram Data Wector

M| ¥Year | Month1|Month2 | Month3 Qtr1 Qtr2 | Otr3 atrd | i]

e

119588 (23000 21500 24600 I'u,' 44500 - - - 1]z
B _B} TS SHEEER AL 76 RS AS A R

&

‘Referencing Elements of a Two-Dimensional Array (8)

Steps of Execution (3):

0 The nested DO loop continues to execute until the index
variable j exceeds the stop value, 3.

0 When the nested DO loop completes execution, the total
sales for the first quarter, otrl, have been computed.

Frogram Data Wectar

N | ¥ear | Month1| Month2 | Month3 atr1 otr2 oatr3 otrd | i

11989 | 23000 21500 24600 69100 . . . 114
= — R ————

[

ol
]

B Q G SHEEER A 7 IS BRRSESASE B2
\&

‘Referencing Elements of a Two-Dimensional Array (9)

Steps of Execution (4):

0 The outer DO loop increments i to 2, and the process
continues for the array element gtr2 and the m array
elements Month4 through Monthé.

Frogram Data Wector

H|! | Month2 | Month3 | Month4 |} Qtr1 Q2 | atr3 atrd [0 |]
1|7 4| 21500 | 24600 | 23300 | 4| 69100 | 23300 . e |21

— _—

0 After the outer DO loop completes execution, the end of
the DATA step Is reached. The variable values for the first
observation are written to the data set Finance.Quarters.

Program Diata Wector

M |1+ | Month2 | Month3 | Monthd |- Qtr1 Qtrz | Atr3 atrd [1]
1]° I\I 21500 | 24600 z3300 | ° o] 69100 | 23300 69200 | 71800 | 5[4
————————— e ——————————————————————————————

-

B _BR G SHEEER A 78 IS BRATSESAS A RATE
\&

‘Referencing Elements of a Two-Dimensional Array (10)

Steps of Execution (5):

" N observations in the data set Finance.Monthly are
processed in the same manner.

0 Below is a portion of the resulting data set, which
contains the sales figures grouped by quarters.

=45 Data Set Finance. Cluarters (Partial Listing)

Year 0Qtrl OQtrZ2 OQtrd OQtrd
1989 69100 64400 | 62200 71200
1990 | 73100 | 72000 | 823200 | 82200
1991 | /2400 81800 85200 | 27200
By fiemsit spemmnes ’ RSSO

&

‘ Quiz

Based on the ARRAY statement below, select the array reference for

the array element g50.
array ques{3,25} ql-gq75;

a. ques{qg50}
b. ques{1,50}
Cc. ques{2,25}
d. ques{3,0}

» Correct answer: c
[This two-dimensional array would consist of three rows of 25 elements. The
first row would contain ql1 through g25, the second row would start with 26
and end with g50, and the third row would start with g51 and end with q75.

-

B PR SR SRR AL 60 PR TS SAS A SRR
\&

‘ Rotating Data Sets (1)

9 We've seen a number of uses for arrays, including
creating variables, performing repetitive calculations, and
performing table lookups. We can also use arrays for
rotating (transposing) a SAS data set.

0 When we rotate a SAS data set, we change variables to
observations or observations to variables.

B 13} I SRR AR 3 ISR A IR

Rotating Data Sets (2)

SAS Data Set Finance. Funddrive

Example LastMame | Qtrl QtrZ Qtr3 Qtrd
abaps 18 18 20 20
. . ALE=aAMNDE 15 18 15 10
Rotate the Finance.Funddrive APPLE 25| 25| 25| 28
data set to create four output ARTRR | 01) =L S
]] AVERY 15 15 15 15
observations from each input BAREFOOT | 20| 20, 20| 20
= BALICOM 25 20 20 30
observation. o R I
BLALOCE = 10 10 15
BOSTIC 20 25 30 25
BRADLEY 12 16 14 18
BRADY 20 20 20 20
BROWIMN 18 18 18 18
BEYAMT 16 18 20 18
BLURMETTE 10 10 10 10
CHEUMG 30 30 30 30
LEHM AN 20 20 20 20
VALADEZ 14 18 40 25

B 13} I SKEEERAS 62 ISERFSESAS B R

&

Rotating Data Sets (3)

Example:

0 the following program rotates the data set and lists the

first 16 observations in the new data set.

data work.rotate (drop=qtrl-qtr4) ;
set finance.funddrive;
array contrib{4} gqtrl-gqtr4;
do Qtr=1 to 4;
Amount=contrib{qtr};
output;
end;
run;

proc print data=rotate (obs=16)
noobs;

run,

B N dbstemssit Sasemas 53

ﬂ jing Biometric Association

LastName Qtr Amount

AOANMS
ADANMS
ADANMS
ADANMS
ALERANDER
ALEXANDER
ALERANDER
ALEXAMNDER
APPLE
APPLE
APPLE
APPLE
ARTHUR
ARTHLIR
ARTHLIE
ARTHUR

—_

= R =) R = e W R = R D RD

18
18
20
20
15
18
15
10
25
25
25
24
10
25
20
30

-

R ST SAS S R 4mTE

‘ Points to Remember (1)

0 A SAS array exists only for the duration of the DATA
step.

0 Do not give an array the same name as a variable In
the same DATA step. Also, avoid using the name of a SAS
function as an array name—the array will be correct, but
you won't be able to use the function in the same DATA
step, and a warning will be written to the SAS log.

B 13} I SRR AR o4 ISR A IR

‘ Points to Remember (2)

9 You can indicate the dimension of a one-dimensional
array with an asterisk (*) as long as you specify the
elements of the array.

9 When referencing array elements, be careful not to
confuse variable names with the array references. WqtDiff1
through WqgtDIff5 is not the same as WgtDiff{1} through
WgtDiff{5}.

-

B 13} I SRR AR e ISR A IR

‘ Applications - Examples

This section introduces some array applications in

0 Data manipulations from data search - Example 1
9 Count consecutive days - Example 2

gl LOCF - Example 3

9 Find and replace - Example 4

0 Shift - Example 5

Leading to a more complicated efficient process.

B P} TS SHEEER AL Z PR TS SAS A SRR

ccccccccccccccccccccccccc

&

' Example 1 - Search Specified Value

efficacy iIs reached.

9 The example is to find on which day the maximum

The algorithm is to compare the target value against an
array and perform an action if the target value is found in the

array.

SUBJECT DAY1 DAY2 DAY3 DAY4 T

101 0.0 0.0 0.0 0.0
102 . 05 05 0.0
106 0.5 0.0 0.0 0.0
107 0.5 20 05 20

111 1.0 3.0 2.0 25

112 2.0 3.0 25 3.5

MAX

A N NN RN

Bp)\ dSemsiit SuiR e s

-/‘\ ccccccccccccccccc

data pd2;
set pdil;
array days[4] dayl-day4;
maxscore=max (of days [*])
do i=1 to dim(days) ;
if maxscore >0 and
days[i]=maxscore then do;
tmax=i;
return;
end;
end;
drop i maxscore;
run;

87 SR FTSASER R ts

‘ Example 2 - Count Consecutive Days (1)

SUBJID DATE DATECNT
25MAR2004 1

26MAR2004 2
2/MAR2004 3
28MAR2004 4
29MAR2004 5
26MAR2004 1
2/MAR2004 2
29MAR2004 3
26MAR2004 1
2/MAR2004 2
28MAR2004 3
02APR2004 4
02APR2004 1

9 We check to see whether a subject has
experienced night awakening for more than
3 consecutive days.

9 From the DIARY data set and program
below, we can easily list the subjects and
their consecutive days along with start date
and stop date by using array.

Target dataset

o)
/-b W W W w NN DD PR

)

LSS S EER AR

] g Biometric Association

@

SUBJID count f date | date
> 1 5 25MAR2004 29MAR2004
3 3 26MAR2004 28MAR2004
88 GRS SASTR R RIS

‘ Example 2 - Count Consecutive Days (2)

Stepl. Transpose

Templ

SUBJID _NAME_ _datl _dat2 _dat3 _dat4 _dat5
1 date 25MAR2004 26MAR2004 27MAR2004 28MAR2004 29MAR2004
2 date 26MAR2004 27MAR2004 29MAR2004
3 date 26MAR2004 27MAR2004 28MAR2004 02APR2004
4 date 02APR2004

proc transpose data=diary prefix= dat out=templ;
by subjid;
var date;

run,

B P} I SRR AR o9 ISR A IR
\&

' Example 2 - Count Consecutive Days (3)

Step2. Count Consecutive Days using Array

data temp2

(keep=subjid flag count I rename=(i=datecnt)) ;

set templ ;
array dates {*} _dat: dummy ;
retain flag count 1;
do i=1 to dim(dates)-1;
if dates[i]”*=. then do;
if dates[i] = dates[i+1l]-1 then do;
output; count=count + 1;
end;
else do;

output; flag =flag + 1; count=1l;

end;
end;
end;
run;

B\ dbxemsiSHmmmias o
\&

Temp?2

SUBJID flag count datecnt
1 1 1 1

DR WWWWNNNRERPRPR
O A ARNWNNERRPR PR
P P WONRPERPNRPRPOONWN
R DA WNRFEPWOWONRERPOODMWN

R ST SAS S R 4mTE

‘ Example 2 - Count Consecutive Days (4)

Step3. Manipulation

data temp3;
merge temp2 diary;
by subjid datecnt;

run,

B\ it Shmemnas
&

VAl

Temp3

1

AW WWWDNDNNREFPRPEPRE

1

O BARADNWNNERERPRPR

1

P P OODNEFPFPFPNEOOPRRODN

1

P A OWOWDNPFPWODNEOOPRWODN

SUBJID flag count datecnt date

25MAR2004
26MAR2004
27/MAR2004
28MAR2004
29MAR2004
26MAR2004
27MAR2004
29MAR2004
26MAR2004
27MAR2004
28MAR2004
02APR2004
02APR2004

R ST SAS S R 4mTE

' Example 2 - Count Consecutive Days (5)

Step3. Manipulation

data continue (where=(count >=3));
/*3 consecutive days defined*/
set temp3;
by subjid flag;

Target dataset retain f date ;
if first.flag then f date=date ;
SUBJID count f_date | date _ -
if last.flag then do;
1 5 25MAR2004 29MAR2004 1 date=date ;
3 3 26MAR2004 28MAR2004 output;
end;
keep subjid f date 1 date count;
format £ date 1 date date9. ;
run;
B P} SR SRR AL 92 PR TS SAS A SRR

&

‘ Example 3 - Data LOCF (1)

"LOCF" stands for "Last Observation Carried Forward", it means last non-missing
value carried forward.

TIME1 TIME2 TIME3 TIME4 TIMES
A B : : E
=
TIMEA TIMEZ TIME3 TIME4 TIMES
A B B B E

In LOCF analyses, when a patient drops out of a trial, the results of the last
evaluation are carried forward as if the he had continued to the completion of the

trial without further change.

Since patients who discontinue medication are regarded as treatment failures,
LOCF analyses are widely considered to provide a more conservative test of drug

effects.

B _BR G SHEEER A 93 IS BRATSESAS A RATE
\&

' Example 3 - Data LOCF (2)

SUBJID TIME1 TIMEZ2 TIME3 TIME4 TIMES MAKEUP

05 0.0 0.0 05 0.5

0.5 : : 1.5 0.0
0.0 1.0 : 0.0 0.0
0.0 0.0 : 0.0 0.0
05 15 : 05 0.5
1.0 15 0.5 . 1.0

1/

The following data set called SCORE L 05

will be used as the example. '

2 0.0

3 0.0

data locf ; 4 0.0

set score ; 5 0.0

array time [*] time: ; 6 00

do i=1 to dim(time) ; '

if time[i]=. then time[i]=time[i-1];
end;

drop 1 makeup; SUBJID

run; 1

2

3

4

5

6

B \d IS SRR A

-B/‘\ cccccccccccccccc

94

TIME1 TIME2 TIME3 TIME4 TIMES
0.5 0.5 0.0 0.0 0.5
0.0 0.5 0.5 0.5 1.5
0.0 0.0 1.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.5 1.5 1.5 0.5
0.0 1.0 1.5 0.5 0.5

R ST SAS S R 4mTE

‘ Example 4 - Find and Replace (1)

The array-implemented find& replace is exceptionally powerful and fast.
The algorithm replaces elements referred to by iterator i in the array with
new value when the condition holds, such as to find and replace the
missing data. In some cases, the experiment measurements are not
conducted continuously. They are discrete instead. To test the irritation of
skins to patch or ointment as the example, the skin at different positions
are supposed to be tested in the order of left arm, right arm, back, ... If
one or more points somehow are skipped, the makeup tests would be
done to get those data missed.

TIME1 TIME2 TIME3 TIME4 TIMES MAKEUP
A B . D E C

t |

B 'BA LR ESIT SBUREEKS 95 IR STSASTE R4 tE

nnnnnnnnnnnnnnnnnnnnn

(=1}

' Example 4 - Find and Replace (2)

data replace;
set score;

array apps [5] timel- time5;

do i=1 to dim(apps)

end;
drop 1 ;
run;

B \d IS SRR A

-B/‘\ cccccccccccccccc

SUBJID TIME1 TIMEZ2 TIME3 TIME4 TIMES MAKEUP
1 0.5 05 0.0 0.0 05 0.5
2 0.0 0.5 : : 1.5 0.0
3 0.0 0.0 10 : 0.0 0.0
4 0.0 0.0 0.0 : 0.0 0.0
5 0.0 05 15 : 05 0.5
6 0.0 1.0 15 0.5 . 1.0

if apps[i] =. then apps[i]=makeup ; <£:17

SUBJID TIME1 TIME2 TIME3 TIME4 TIME5S MAKEUR

1 0.5 0.5 0.0 0.0 0.5 0.5

2 0.0 0.5 0.0 0.0 1.5 0.0

3 0.0 0.0 1.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.5 1.5 05 05 05

6 0.0 1.0 1.5 0.5 1.0 1.0
96 s PRF 3T SAS B R 4R T2

‘ Example 5 - Data Shift (1)

One subject should undergo a certain times of tests in
some situations, and the time order should be kept, then a
data shift process can be applied with the help of array.

TIME1 TIME?Z2 TIME3 TIME4 TIMES MAKEUP
A B : D E C
TIME1 TIME2 TIME3 TIME4 TIMES
A B D E C
B\ it Shmemnas 7 WSS BRI

<4

‘ Example 5 - Data Shift (2)

data shift; SUBJID TIMEL TIME2 TIME3 TIME4 TIME5 MAKEUP
set score; 1 05 05 00 00 05 05
array apps[*] time: makeup; 2 0.0 0.5 . . 1.5 0.0
do i = 1 to dim(apps)-1; 3 00 00 10 . 00 0.0
if apps[i] = . then do; 4 00 00 00 . 00 0.0
do j =1 to dim(apps)-1; 5 00 05 15 . 05 05
apps[j] = apps[j+1];
end: 6 00 10 15 05 . 1.0
mu='-"'| |compress (i) ;
if apps[i] = . then i=i-1;
end; SUBJID TIMEL TIME2 TIME3 TIME4 TIME5 MAKEUP md
end; o 1 05 05 00 00 05 0.5
drop 1 3] ; 2 00 05 15 00 00 00 -3
run,
3 00 00 10 00 00 0.0 -4
A do loop would be useful if there 4 00 00 00 00 00 00 4
are more than one missing data in 5 00 05 15 05 05 0.5 -4
the rows. 6 00 10 15 05 1.0 1.0 -5
B\ dosecimsit SHimsmRas Z PR SESAST R

&

It is often required to merge dose data with
other safety data, such as adverse events,

‘ Example 6 - Data Merge (1)

vital signs, ECG, and lab results, and locate ~ |SYBJIP AE AEDTTM
the dose-related Safety profi]es_ For 1 NERVOUSNESS 30JAN1999:06:00:00
example, a patient is given several doses at 1 TACHYCARDIA 30JAN1999:12:15:00
certain time points. After each dose, some 1 NAUSEA 06EEB1999:16:20:00
adverse events may occur to the pgtlent. We || DbizziNEss 2OFEB1999:09:20:00
need to know which adverse event is

. . : 2 HEADACHE 06FEB1999:14:10:00
associated with which dose. Suppose there
is a dose dataset and an adverse event 2 NAUSEA O6FEB1999:17:40:00
dataset.
Dose
SUBJID DOSEN1 DOSEN2 DOSEN3 DOSEN4

1 30JAN1999:08:00:00 06FEB1999:08:00:00 20FEB1999:08:00:00 27FEB1999:08:00:00
2 30JAN1999:08:01:00 O06FEB1999:08:01:00 20FEB1999:08:01:00 06MAR1999:08:01:00
3 30JAN1999:08:02:00 O06FEB1999:08:02:00 13FEB1999:08:02:00 27FEB1999:08:02:00

NG g
&

R ST SAS S R 4mTE

‘ Example 6 - Data Merge (2)

SUBJID AEDTTM AE dosedttm dosenum hrpostds
1 30JAN99:12:15:00 TACHYCARDIA 30JAN1999:08:00:00 1 4.3
1 06FEB99:16:20:00 NAUSEA O6FEB1999:08:00:00 2 8.3
1 20FEB99:09:20:00 DIZZINESS 20FEB1999:08:00:00 3 1.3
2 06FEB99:14:10:.00 HEADACHE 06FEB1999:08:01:00 2 6.2
data dose ae;
merge_dose ae; [2__ O06FEB99:17:40:00 NAUSEA O6FEB1999:08:01:00 2 9.7

by subjid;

array dosen {*} dosen:;

do i=1 to dim(dosen) ;
if dosen[i]”*=. and aedttm > dosen[i] then do;

dosedttm = dosen[i]; dosenum = i;

end;

end;

if dosenum”=.;

hrpostds = round(((aedttm-dosedttm)/3600), 0.1);

format dosedttm datetime20. ;

drop i dosenl - dosend; The final result is shown above, variable
run; DOSENUM is the order number of doses,
and HRPOSTDS is time in hours after
dosing.
Bo

N R ASASE
\&

