
临床研究SAS高级编程 1

临床研究SAS高级编程

－－ Do-to & Array

临床研究SAS高级编程 2

Contents

Generating data with DO loops

Processing variables with arrays

临床研究SAS高级编程 3

Generating Data with DO Loops

Contents

Introduction

Constructing DO loops

Do loop execution

Counting do loop iterations

Decrementing do loops

Specifying a series of items

Nesting do loops

Iteratively processing data that is read from a data set

Conditionally executing do loops

Using conditional clauses with the iterative DO statement

Creating samples

临床研究SAS高级编程 4

Introduction (1)

DO loops can execute any number of times in a single iteration of the

DATA step. Using DO loops enables you to write concise DATA steps

that are easier to change and debug.

For example, the DO loop in this program eliminates the need for 12

separate programming statements to calculate annual earnings:

data finance.earnings;

 set finance.master;

 Earned=0;

 do count=1 to 12;

 earned+(amount+earned)*(rate/12);

 end;

run;

临床研究SAS高级编程 5

In this section, you learn to

construct a DO loop to perform repetitive calculations

control the execution of a DO loop

generate multiple observations in one iteration of the DATA

step

construct nested DO loops.

Introduction (2)

临床研究SAS高级编程 6

Constructing DO Loops (1)

Introduction

DO loops process a group of statements repeatedly rather than

once. This can greatly reduce the number of statements required for

a repetitive calculation. For example, these 12 Sum statements

compute a company's annual earnings from investments. Notice that

all 12 statements are identical.

临床研究SAS高级编程 7

Example:
data finance.earnings;

 set finance.master;

 Earned=0;

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

 earned+(amount+earned)*(rate/12);

Run;

Each Sum statement accumulates the calculated

interest earned for an investment for one month. The

variable Earned is created in the DATA step to store the

earned interest. The investment is compounded monthly,

meaning that the value of the earned interest is

cumulative. A DO loop enables you to achieve the same

results with fewer statements. In this case, the Sum

statement executes 12 times within the DO loop during

each iteration of the DATA step.

data finance.earnings;

 set finance.master;

 Earned=0;

 do count=1 to 12;

 earned+(amount+earned)*(rate/12);

 end;

run;

Constructing DO Loops (2)

临床研究SAS高级编程 8

General form of do loops

To construct a DO loop, you use the DO and END statements

along with other SAS statements.

General form, simple iterative DO loop:

DO index-variable=start TO stop BY increment;

 SAS statements

 END;

 where the start, stop, and increment values
 are set upon entry into the DO loop

 cannot be changed during the processing of the DO loop

 can be numbers, variables, or SAS expressions.

The END statement terminates the loop.

 Note The value of the index variable can be changed within the loop.

Constructing DO Loops (3)

临床研究SAS高级编程 9

When creating a DO loop with the iterative DO statement, you must
specify an index variable. The index variable stores the value of the
current iteration of the DO loop. You can use any valid SAS name.

DO index-variable = start TO stop BY increment;

 SAS statements

END;

Next, specify the conditions that execute the DO loop. A simple
specification contains a start value, a stop value, and an increment
value for the DO loop.

DO index-variable = start TO stop BY increment;

 SAS statements

END;

The start value specifies the initial value of the index variable.
DO index-variable = start TO stop BY increment;

 SAS statements

END;

Constructing DO Loops (4)

临床研究SAS高级编程 10

The TO clause specifies the stop value. The stop value is the last index
value that executes the DO loop.

DO index-variable=start TO stop BY increment;

 SAS statements

END;

The optional BY clause specifies an increment value for the index variable.
Typically, you want the DO loop to increment by 1 for each iteration. If you do
not specify a BY clause, the default increment value is 1.

DO index-variable=start TO stop BY increment;

 SAS statements

END;

For example, the specification below increments the index variable by 1,
resulting in quiz values of 1, 2, 3, 4, and 5:

do quiz=1 to 5;

By contrast, the following specification increments the index variable by 2,
resulting in rows values of 2, 4, 6, 8, 10, and 12:

do rows=2 to 12 by 2;

Constructing DO Loops (5)

临床研究SAS高级编程 11

DO Loop Execution (1)

Using the form of the DO loop that was just presented,

let's see how the DO loop executes in the DATA step. This

example calculates how much interest was earned each

month for a one-year investment.

Example:

data finance.earnings;

 Amount=1000;

 Rate=.075/12;

 do month=1 to 12;

 Earned+(amount+earned)*(rate);

 end;

run;

临床研究SAS高级编程 12

DO Loop Execution (2)

This DATA step does not read data from an external

source. When submitted, it compiles and then executes

only once to generate data. During compilation, the

program data vector is created for the Finance.Earnings

data set.

When the DATA step executes, the values of Amount

and Rate are assigned.

临床研究SAS高级编程 13

DO Loop Execution (3)

Next, the DO loop executes. During each execution of

the DO loop, the value of Earned is calculated and is added

to its previous value; then the value of month is

incremented. On the twelfth execution of the DO loop, the

program data vector looks like this:

临床研究SAS高级编程 14

DO Loop Execution (4)

After the twelfth execution of the DO loop, the value of month is

incremented to 13. Because 13 exceeds the stop value of the iterative

DO statement, the DO loop stops executing, and processing continues

to the next DATA step statement. The end of the DATA step is reached,

the values are written to the Finance. Earnings data set, and in this

example, the DATA step ends. Only one observation is written to the

data set.

Notice that the index variable month is also stored in the data set. In most cases,

 the index variable is needed only for processing the DO loop and can be dropped

 from the data set.

临床研究SAS高级编程 15

Counting do loop iterations (1)

Counting iterations of DO loops

In some cases, it is useful to create an index variable to count and

store the number of iterations in the DO loop. Then you can drop the

index variable from the data set.

Example:

 data work.earn (drop=counter);

 Value=2000;

 do counter=1 to 20;

 Interest=value*.075;

 value+interest;

 Year+1;

 end;

 run;

The Sum statement Year+1 accumulates

 the number of iterations of the DO loop

and stores thetotal in the new variable Year. The

final value of Year is then stored in the data set,

whereas the index variable counter is dropped.

The data set has one observation.

临床研究SAS高级编程 16

Explicit OUTPUT statements

To create an observation for each iteration of the DO loop, place

an OUTPUT statement inside the loop. By default, every DATA step

contains an implicit OUTPUT statement at the end of the step. But

placing an explicit OUTPUT statement in a DATA step overrides

automatic output, causing SAS to add an observation to the data set

only when the explicit OUTPUT statement is executed.

The previous example created one observation because it used

automatic output at the end of the DATA step. In the following

example, the OUTPUT statement overrides automatic output, so the

DATA step writes 20 observations.

Counting do loop iterations (2)

临床研究SAS高级编程 17

Explicit OUTPUT statements

Example:

data work.earn;

 Value=2000;

 do Year=1 to 20;

 Interest=value*.075;

 value+interest;

 output;

 end;

run;

Counting do loop iterations (3)

临床研究SAS高级编程 18

Decrementing DO loops
You can decrement a DO loop's index variable by specifying a

negative value for the BY clause. For example, the specification in
this iterative DO statement decreases the index variable by 1,
resulting in values of 5, 4, 3, 2, and 1.
DO index-variable=5 to 1 by -1;

 SAS statements

END;

When you use a negative BY clause value, the start value must
always be greater than the stop value in order to decrease the index
variable during each iteration.
DO index-variable=5 to 1 by -1;

 SAS statements

END;

Decrementing DO loops

临床研究SAS高级编程 19

Specifying a series of items

You can also specify how many times a DO loop executes by

listing items in a series.

General form, DO loop with a variable list:

DO index-variable=value1, value2, value3...;

 SAS statements

END;

where values can be character or numeric.

Specifying a series of items (1)

临床研究SAS高级编程 20

When the DO loop executes, it executes once for each item in the series. The index
variable equals the value of the current item. You must use commas to separate items in
the series.

To list items in a series, you must specify either all numeric values
DO index-variable=2,5,9,13,27;

 SAS statements

END;

 all character values, with each value enclosed in quotation marks
DO index-variable='MON','TUE','WED','THR','FRI';

 SAS statements

END;

all variable names—the index variable takes on the values of the specified variables.
DO index-variable=win,place,show;

 SAS statements

END;

Variable names must represent either all numeric or all character values. Do not
enclose variable names in quotation marks.

Specifying a series of items (2)

临床研究SAS高级编程 21

Nesting DO Loops (1)

Iterative DO statements can be executed within a DO loop. Putting a DO loop within a DO loop is
called nesting.

do i=1 to 20;

 SAS statements

 do j=1 to 10;

 SAS statements

 end;

 SAS statements

end;

The following DATA step computes the value of a one-year investment that earns 7.5% annual
interest, compounded monthly.

data work.earn;

 Capital=2000;

 do month=1 to 12;

 Interest=capital*(.075/12);

 capital+interest;

 end;

run;

临床研究SAS高级编程 22

Nesting DO Loops (2)

Let's assume the same amount of capital is to be added to the

investment each year for 20 years. The new program must perform the

calculation for each month during each of the 20 years. To do

this, you can include the monthly calculations within another DO loop

that executes 20 times.

data work.earn;

 do year=1 to 20;

 Capital+2000;

 do month=1 to 12;

 Interest=capital*(.075/12);

 capital+interest;

 end;

 end;

run;

临床研究SAS高级编程 23

Nesting DO Loops (3)

During each iteration of the outside DO loop, an

additional 2,000 is added to the capital, and the nested DO

loop executes 12 times.
data work.earn;

 do year=1 to 20;

 Capital+2000;

 do month=1 to 12;

 Interest=capital*(.075/12);

 capital+interest;

 end;

 end;

run;

Note: It is easier to manage nested DO loops if you indent the statements in

each DO loop as shown above.

临床研究SAS高级编程 24

Iteratively Processing Data That Is Read

from a Data Set (1)

So far you have seen examples of DATA steps that use

DO loops to generate one or more observations from one

iteration of the DATA step. Now let's look at a DATA step

that reads a data set to compute the value of a new

variable.

The SAS data set Finance.CDRates, shown below,

contains interest rates for certificates of deposit (CDs) that

are available from several institutions.

临床研究SAS高级编程 25

Suppose you want to compare how much each CD will earn at maturity with

an investment of $5,000. The DATA step below creates a new data set,
Work.Compare, that contains the added variable, Investment.

data work.compare(drop=i);

 set finance.cdrates;

 Investment=5000;

 do i=1 to years;

 investment+rate*investment;

 end;

run;

Iteratively Processing Data That Is Read

from a Data Set (2)

临床研究SAS高级编程 26

The index variable is used only to execute the DO loop, so it is

dropped from the new data set. Notice that the data set variable Years

is used as the stop value in the iterative DO statement. As a result, the

DO loop executes the number of times that are specified by the current

value of Years. During the first iteration of the DATA step, for example,

the DO loop executes five times.

During each iteration of the DATA step,

 an observation is read from Finance.CDRates

 the value 5000 is assigned to the variable Investment

 the DO loop executes, based on the current value of Years

 the value of Investment is computed (each time that the DO loop

executes), using the current value of Rate.

Iteratively Processing Data That Is Read

from a Data Set (3)

临床研究SAS高级编程 27

At the bottom of the DATA step, the first observation is written to the

Work.Compare data set. Control returns to the top of the DATA step,

and the next observation is read from Finance.CDRates. These steps

are repeated for each observation in Finance.CDRates. The resulting

data set contains the computed values of Investment for all

observations that have been read from Finance.CDRates.

Iteratively Processing Data That Is Read

from a Data Set (4)

临床研究SAS高级编程 28

Conditionally Executing DO Loops (1)

The iterative DO statement requires that you specify the number of
iterations for the DO loop. However, there are times when you want to
execute a DO loop until a condition is reached or while a condition
exists, but you don't know how many iterations are needed.

Suppose you want to calculate the number of years that are required
for an investment to reach $50,000. In the DATA step below, using an
iterative DO statement is inappropriate because you are trying to
determine the number of iterations required for Capital to reach
$50,000.

data work.invest;

 do year=1 to ? ;

 Capital+2000;

 capital+capital*.10;

 end;

run;

临床研究SAS高级编程 29

Conditionally Executing DO Loops (2)

Using the DO UNTIL statement

The DO UNTIL statement executes a DO loop until the

expression is true.

General form, DO UNTIL statement:

DO UNTIL(expression);

 more SAS statements

END;

where expression is a valid SAS expression enclosed in parentheses.

临床研究SAS高级编程 30

Conditionally Executing DO Loops (3)

The expression is not evaluated until the bottom of the loop, so a DO
UNTIL loop always executes at least once. When the expression is
evaluated as true, the DO loop is not executed again.

Assume you want to know how many years it will take to earn
$50,000 if you deposit $2,000 each year into an account that earns
10% interest. The DATA step that follows uses a DO UNTIL statement
to perform the calculation until the value is reached. Each iteration of
the DO loop represents one year of earning.

data work.invest;

 do until(Capital>=50000);

 capital+2000;

 capital+capital*.10;

 Year+1;

 end;

run;

临床研究SAS高级编程 31

Conditionally Executing DO Loops (4)

During each iteration of the DO loop,

 2000 is added to the value of Capital to reflect the annual deposit

of $2,000

the value of Capital with 10% interest is calculated

 the value of Year is incremented by 1.

Because there is no index variable in the DO UNTIL statement, the variable

Year is created in a Sum statement to count the number of iterations of the DO

loop. This program produces a data set that contains the single observation

shown below. To accumulate more than $50,000 in capital requires 13 years

(and 13 iterations of the DO loop).

临床研究SAS高级编程 32

Using the DO WHILE statement

Like the DO UNTIL statement, the DO WHILE statement executes

DO loops conditionally. You can use the DO WHILE statement to

execute a DO loop while the expression is true.

General form, DO WHILE statement:

DO WHILE (expression);

 more SAS statements

END;

where expression is a valid SAS expression enclosed in parentheses.

Conditionally Executing DO Loops (5)

临床研究SAS高级编程 33

An important difference between the DO UNTIL and DO WHILE

statements is that the DO WHILE expression is evaluated at the top of

the DO loop. If the expression is false the first time it is evaluated, then

the DO loop never executes. For example, in the following program, if

the value of Capital is less than 50,000, the DO loop does not execute.

data work.invest;

 do while(Capital>=50000);

 capital+2000;

 capital+capital*.10;

 Year+1;

 end;

run;

Conditionally Executing DO Loops (6)

临床研究SAS高级编程 34

Using Conditional Clauses with the Iterative

DO Statement (1)

You have seen how the DO WHILE and DO UNTIL

statements enable you to execute statements conditionally

and how the iterative DO statement enables you to execute

statements a set number of times, unconditionally.

DO WHILE(expression);

DO UNTIL(expression);

DO index-variable=start TO stop BY increment;

临床研究SAS高级编程 35

Now let's look at a form of the iterative DO statement

that combines features of both conditional and

unconditional execution of DO loops.

In this DATA step, the DO UNTIL statement determines

how many years it takes (13) for an investment to reach

$50,000.
data work.invest;

 do until(Capital>=50000);

 Year+1;

 capital+2000;

 capital+capital*.10;

 end;

run;

Using Conditional Clauses with the Iterative

DO Statement (2)

临床研究SAS高级编程 36

Suppose you also want to limit the number of years that you invest

your capital to 10 years. You can add the UNTIL or WHILE expression

to an iterative DO statement to further control the number of iterations.

This iterative DO statement enables you to execute the DO loop until

Capital is greater than or equal to 50000 or until the DO loop executes

10 times, whichever occurs first.

data work.invest(drop=i);

 do i=1 to 10 until(Capital>=50000);

 Year+1;

 capital+2000;

 capital+capital*.10;

 end;

run;

Using Conditional Clauses with the Iterative

DO Statement (3)

临床研究SAS高级编程 37

In this case, the DO loop stops executing after 10

iterations, and the value of Capital never reaches 50000. If

you increase the amount added to Capital each year to

4000, the DO loop stops executing after the eighth iteration

when the value of Capital exceeds 50000.
data work.invest(drop=i);

 do i=1 to 10 until(Capital>=50000);

 Year+1;

 capital+4000;

 capital+capital*.10;

 end;

run;

Using Conditional Clauses with the Iterative

DO Statement (4)

临床研究SAS高级编程 38

The UNTIL and WHILE specifications in an iterative DO statement

function similarly to the DO UNTIL and DO WHILE statements. Both

statements require a valid SAS expression enclosed in parentheses.

UNTIL(expression);

DO index-variable=start TO stop BY increment

WHILE(expression);

The UNTIL expression is evaluated at the bottom of the DO loop,

so the DO loop always executes at least once. The WHILE

expression is evaluated before the execution of the DO loop. So, if

the condition is not true, the DO loop never executes.

Using Conditional Clauses with the Iterative

DO Statement (5)

临床研究SAS高级编程 39

Creating Samples (1)

Because it performs iterative processing, a DO loop provides an

easy way to draw sample observations from a data set. For example,

suppose you would like to sample every tenth observation of the 5,000

observations in Factory.Widgets. Start with a simple DATA step:

data work.subset;

 set factory.widgets;

run;

You can create the sample data set by enclosing the SET statement

in a DO loop. Use the start, stop, and increment values to select every

tenth observation of the 5,000. Add the POINT= option to the SET

statement, setting the POINT= option equal to the index variable that is

used in the DO loop.

临床研究SAS高级编程 40

Example:

data work.subset;

 do sample=10 to 5000 by 10;

 set factory.widgets point=sample;

 end;

run;

Remember that, in order to prevent continuous DATA step looping,

you need to add a STOP statement when using the POINT= option.

Then, because the STOP statement prevents the output of observations

at the end of the DATA step, you also need to add an OUTPUT

statement. Place the statement inside the DO loop in order to output

each observation that is selected. (If the OUTPUT statement were

placed after the DO loop, only the last observation would be written.)

Creating Samples (2)

临床研究SAS高级编程 41

data work.subset;

 do sample=10 to 5000 by 10;

 set factory.widgets point=sample;

 output;

 end;

 stop;

run;

When the program runs, the DATA step reads the observations that

are identified by the POINT=option in Factory.Widgets. The values of

the POINT= option are provided by the DO loop, which starts at 10 and

goes to 5,000 in increments of 10. The data set Work.Subset contains

500 observations.

Creating Samples (3)

临床研究SAS高级编程 42

Processing Variables with Arrays

Contents

Introduction

Defining an array

Variable list as array elements

Array reference

The DIM function

Creating variables with the ARRAY statement

Assigning initial values to arrays

Creating temporary array elements

Multidimensional arrays

Referencing elements of a two-dimensional array

Rotating data sets

Applications – examples

临床研究SAS高级编程 43

Introduction (1)

An array is a temporary grouping of variables under a

single name. This can reduce the number of statements

that are needed to process variables and can simplify the

maintenance of DATA step programs.

In DATA step programming, you often need to perform the

same action on more than one variable. Although you can

process variables individually, it is easier to handle them as

a group. You can do this by using array processing.

临床研究SAS高级编程 44

Introduction (2)

For example, the program below eliminates the need for

365 separate programming statements to convert the daily

temperature from Fahrenheit to Celsius for the year:

data work.report (drop=i);

 set master.temps;

 array daytemp{365} day1-day365;

 do i=1 to 365;

 daytemp{i}=5*(daytemp{i}-32)/9;

 end;

run;

临床研究SAS高级编程 45

Introduction (3)

data work.report;

 set master.temps;

 mon=5*(mon-32)/9;

 tue=5*(tue-32)/9;

 wed=5*(wed-32)/9;

 thr=5*(thr-32)/9;

 fri=5*(fri-32)/9;

 sat=5*(sat-32)/9;

 sun=5*(sun-32)/9;

run;

data work.report(drop=i);

 set master.temps;

 array wkday{7} mon tue wed thr fri sat sun;

 do i=1 to 7;

 wkday{i}=5*(wkday{i}-32)/9;

 end;

run;

Use fewer statements

Easier to be modified or corrected

The same calculation is

performed on each variable.

One reason for using an array

 --- reduce the number of statements:

With array:

临床研究SAS高级编程 46

Defining an Array (1)

General form of an array

 ARRAY array-name{dimension} <elements>;

 array daytemp{365} day1-day365;

Arrays exist only for the duration of the DATA step. They do not
become part of the output data set.

Do not give an array the same name as a variable in the same DATA
step.

Array elements must be either all numeric or all character.

If no elements are listed, new variables will be created with default
names.

You cannot use array names in LABEL, FORMAT, DROP, KEEP, or
LENGTH statements.

临床研究SAS高级编程 47

Defining an Array (2)

Dimension

The dimension describes the number and arrangement of

elements in the array. There are several ways to specify the

dimension:

the number of array elements
 array sales{4} qtr1 qtr2 qtr3 qtr4;

a range of values
 array sales{96:99} totals96 totals97 totals98 totals99;

using (*), the dimension is determined by counting the number of

elements.
 array sales{*} qtr1 qtr2 qtr3 qtr4;

临床研究SAS高级编程 48

Defining an Array (3)

Elements

Specifying array elements

list each variable name
 array sales{4} qtr1 qtr2 qtr3 qtr4;

specify array elements as a variable list.
 array sales{4} qtr1-qtr4;

Let's look more closely at array elements that are specified as variable
lists. It has several forms.

临床研究SAS高级编程 49

Variable List as array Elements

a numbered range of variables: Var1-Varn
 array sales{4} qtr1-qtr4;

 must have the same name except for the last character

 the last character must be numeric

must be numbered consecutively.

all numeric variables: _NUMERIC_
 array sales{*} _numeric_;

all character variables: _CHARACTER_
 array sales{*} _character_;

all variables: _ALL_
 array sales{*} _all_;

临床研究SAS高级编程 50

Array Reference (1)

Overview

When you define an array in a DATA step, an index value is

assigned to each element. During execution, you can use an array

reference to perform actions on specific array elements. When used

in a DO loop, for example, the index variable of the iterative DO

statement can reference each element of the array.

临床研究SAS高级编程 51

Array Reference (2)

General form of ARRAY reference:

 array-name{index value}

where index value

is enclosed in parentheses, braces, or brackets

specifies an integer, a numeric variable, or a SAS

numeric expression

 is within the lower and upper bounds of the dimension

of the array.

临床研究SAS高级编程 52

Array Reference (3)

Examples

reference the elements of an array by an index value

 data work.report(drop=i);

 set master.temps;

 array wkday{7} mon tue wed thr fri sat sun;

 do i=1 to 7;

 if wkday{i}>95 then output;

 end;

 run;

 Typically, arrays are used with DO loops.

The index values are assigned in the order of the array elements.

 1 2 3 4

 array quarter{4} jan apr jul oct;

 do i=1 to 4;

 YearGoal=quarter{i}*1.2;

 end;

临床研究SAS高级编程 53

Array Reference (4)

Compilation and execution (1)
An example – Kilograms to be converted to pounds:

 data hrd.convert;

 set hrd.fitclass;

 array wt{6} weight1-weight6;

 do i=1 to 6;

 wt{i}=wt{i}*2.2046;

 end;

 run;

临床研究SAS高级编程 54

Array Reference (5)

Compilation and execution (2)

An example – Kilograms to be converted to pounds:

The program data vector is created for the Hrd.Convert data set.

The index values of the array elements are assigned.

Note that the array name and the array references are not included in the program data

vector.

The first observation is read into the program data vector.

Because the ARRAY statement is a compile-time only statement, it is ignored during
execution. The DO loop is executed next.

临床研究SAS高级编程 55

Array Reference (6)

Compilation and execution (3)

An example – Kilograms to be converted to pounds:
Because wt{1} refers to the first array element, Weight1, the value of

Weight1 is converted from kilograms to pounds.

Continues its DO loop iterations,

The index variable i is changed from 1 to 6, causing Weight2 through

Weight6 to receive new values in the program data vector, as shown below.

临床研究SAS高级编程 56

The DIM Function

You can also use the DIM function to return the number of elements in

the array.

When you use the DIM function, you do not have to re-specify the stop

value of a DO statement if you change the dimension of the array.

General form of DIM function:

 DIM(array-name)

 array wt{*} weight1-weight6;

 do i=1 to dim(wt);

 wt{i}=wt{i}*2.2046;

 end;

dim(wt) returns a value of 6.

array-name specifies the array.

临床研究SAS高级编程 57

Quiz

Which DO statement would not process all the elements in

the factors array shown below?
 array factors{*} age height weight bloodpr;

a. do i=1 to dim(factors);

b. do i=1 to dim(*);

c. do i=1,2,3,4;

d. do i=1 to 4;

Correct answer: b

To process all the elements in an array, you can either specify the array
dimension or use the DIM function with the array name as the argument.

临床研究SAS高级编程 58

Creating Variables with Array (1)

Overview

You can also create variables in an ARRAY statement by omitting

the array elements from the statement.

Because you are not referencing existing variables, SAS

automatically creates the variables for you and assigns default

names to them.

临床研究SAS高级编程 59

Creating Variables with Array (2)

General form (1)

General form of ARRAY statement to create new variables:

 ARRAY array-name{dimension};

where array-name specifies the name of the array.

dimension describes the number and arrangement of array elements. The

default dimension is one.

临床研究SAS高级编程 60

Creating Variables with Array (3)

General form (2)

In creating variables in array statement, you can

Creates default variable names

concatenating the array name and the numbers 1, 2, 3, and so on, up

to the array dimension
 array WgtDiff{5};

Variables created: WgtDiff1 WgtDiff2 WgtDiff3 WgtDiff4 WgtDiff5

Specify individual variable names

list each name as an element of the array.

 array WgtDiff{5} Oct12 Oct19 Oct26 Nov02 Nov09;

Variables created: Oct12 Oct19 Oct26 Nov02 Nov09

临床研究SAS高级编程 61

Creating Variables with Array (4)

General form (3)

 In creating variables in array statement, you can

Creating arrays of character variables

To create an array of character variables, add a dollar sign ($) after

the array dimension.

 array firstname{5} $;

By default, all character variables that are created in an ARRAY

statement are assigned a length of 8. You can assign your own length

by specifying the length after the dollar sign..

 array firstname{5} $ 24;

临床研究SAS高级编程 62

Creating Variables with Array (5)

Example

Create variables that contain

this weekly difference

group the variables Weight1

through Weight6 into an

array

create the new variables to

store the differences.

– use an additional ARRAY

statement without elements

to create the new variables.

use a DO loop to calculate

the differences between

each of the recorded weights.

data hrd.diff;

 set hrd.convert;

 array wt{6} weight1-weight6;

 array WgtDiff{5};

 do i=1 to 5;

 wgtdiff{i}=wt{i+1}-wt{i};

 end;

run;

(A portion of the resulting data set)

临床研究SAS高级编程 63

Creating Variables with Array (6)

Compilation

During the compilation of the DATA step, the variables that this

ARRAY statement creates are added to the vector.

Be careful not to confuse the array references WgtDiff{1} through

WgtDiff{5} (note the braces) with the variable names WgtDiff1

through WgtDiff5. Below shows the relationship.

临床研究SAS高级编程 64

Assigning Initial Values to Array (1)

General form

Assign initial values to elements of an array when you define the

array.

 array goal{4} g1 g2 g3 g4 (initial values);

 array goal{4} g1 g2 g3 g4 (9000 9300 9600 9900);

place the values after the array elements

specify one initial value for each corresponding array element

separate each value with a comma or blank

enclose the initial values in parentheses.

临床研究SAS高级编程 65

Assigning Initial Values to Array (2)

Examples (1)

Enclose each character value in quotation marks.
 array col{3} $ color1-color3 ('red','green','blue');

Assign initial values without specifying array element.
 array Var{4} (1 2 3 4);

It creates the variables Var1, Var2, Var3, and Var4, and assigns

them initial values of 1, 2, 3, and 4:

临床研究SAS高级编程 66

Assigning Initial Values to Array (3)

Examples (2)
To compare the actual sales figures to the goals. The actual sales are

stored in Finance.Qsales while the goals are not recorded in.

 data finance.report(drop=i);

 set finance.qsales;

 array sale{4} sales1-sales4;

 array Goal{4} (9000 9300 9600 9900);

 array Achieved{4};

 do i=1 to 4;

 achieved{i}=100*sale{i}/goal{i};

 end;

 run;

Variables to which initial values are assigned in an ARRAY statement

are automatically retained.

临床研究SAS高级编程 67

Creating Temporary Array Elements

How to eliminate Goal1 through Goal4 as they are not needed in

the previous example? Here Temporary Array Elements comes in.

 data finance.report;

 set finance.qsales;

 array sale{4} sales1-sales4;

 array goal{4} _temporary_ (9000 9300 9600 9900);

 array Achieved{4};

 do i=1 to 4;

 achieved{i}=100*sale{i}/goal{i};

 end;

 run;

临床研究SAS高级编程 68

Multidimensional Arrays (1)

To define a multidimensional array, you specify the number of

elements in each dimension, separated by a comma.

 array new{3,4} x1-x12;

The first dimension in the ARRAY statement specifies the number of rows.

The second dimension specifies the number of columns.

Reference any element of the array by specifying the two dimensions.

 array new{3,4} x1-x12;

 new{2,3}=0;

临床研究SAS高级编程 69

Multidimensional Arrays (2)

When you define a two-dimensional array, the array elements are

grouped in the order in which they are listed in the ARRAY statement.

 array new{3,4} x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12;

The array elements x1 through x4 can be

thought of as the first row of the table.

The elements x5 through x8 become the

second row of the table, and so on.

临床研究SAS高级编程 70

Referencing Elements of a Two-Dimensional Array (1)

Multidimensional arrays are typically used with nested

DO loops.

If a DO loop processes a two dimensional array, you can

reference any element within the array by specifying the

two dimensions.

临床研究SAS高级编程 71

An example (1):

A company's sales

figures are stored by

month (Finance.Monthly).

Your task is to generate

a new data set of

quarterly sales rather

than monthly sales.

Raw data set:

Sales by month

Task:

Sales by quarter

Referencing Elements of a Two-Dimensional Array (2)

临床研究SAS高级编程 72

An example (2):

1. Defining the array m{4,3} puts

the variables Month1 through

Month12 into four groups of

three months (yearly quarters).

Data inance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 do i=1 to 4;

 qtr{i}=0;

 do j=1 to 3;

 qtr{i}+m{i,j};

 end;

 end;

run;

Referencing Elements of a Two-Dimensional Array (3)

临床研究SAS高级编程 73

An example (3):

2. Defining the array Qtr{4}

creates the numeric variables

Qtr1, Qtr2, Qtr3, Qtr4,

which will be used to sum the

sales for each quarter.

Data inance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 do i=1 to 4;

 qtr{i}=0;

 do j=1 to 3;

 qtr{i}+m{i,j};

 end;

 end;

run;

Referencing Elements of a Two-Dimensional Array (4)

临床研究SAS高级编程 74

Data inance.quarters(drop=i j);

 set finance.monthly;

 array m{4,3} month1-month12;

 array Qtr{4};

 do i=1 to 4;

 qtr{i}=0;

 do j=1 to 3;

 qtr{i}+m{i,j};

 end;

 end;

run;

An example (4):

3. A nested DO loop is used to

reference the values of the

variables Month1 through

Month12 and to calculate the

values of Qtr1 through

Qtr4.

To see how the nested DO loop processes these arrays, let's examine the

execution of this DATA step.

Referencing Elements of a Two-Dimensional Array (5)

临床研究SAS高级编程 75

Steps of Execution (1):

When this DATA step is compiled, the vector is created.

The PDV contains the variables Year, Month1 through

Month12, and the new variables Qtr1 through Qtr4.

In the first execution of the DATA step, the 1st observation

of Finance.Monthly are read into the program data vector.

Referencing Elements of a Two-Dimensional Array (6)

临床研究SAS高级编程 76

Steps of Execution (2):

During the first iteration of the nested DO loop, the value

of Month1, which is referenced by m{i,j}, is added to

Qtr1.

During the second iteration of the nested DO loop, the

value of Month2, which is referenced by m{i,j}, is

added to Qtr1.

Referencing Elements of a Two-Dimensional Array (7)

临床研究SAS高级编程 77

Steps of Execution (3):

The nested DO loop continues to execute until the index

variable j exceeds the stop value, 3.

When the nested DO loop completes execution, the total

sales for the first quarter, Qtr1, have been computed.

Referencing Elements of a Two-Dimensional Array (8)

临床研究SAS高级编程 78

Steps of Execution (4):

The outer DO loop increments i to 2, and the process

continues for the array element Qtr2 and the m array

elements Month4 through Month6.

After the outer DO loop completes execution, the end of

the DATA step is reached. The variable values for the first

observation are written to the data set Finance.Quarters.

Referencing Elements of a Two-Dimensional Array (9)

临床研究SAS高级编程 79

Steps of Execution (5):

All observations in the data set Finance.Monthly are

processed in the same manner.

Below is a portion of the resulting data set, which

contains the sales figures grouped by quarters.

Referencing Elements of a Two-Dimensional Array (10)

临床研究SAS高级编程 80

Quiz

Based on the ARRAY statement below, select the array reference for

the array element q50.

 array ques{3,25} q1-q75;

a. ques{q50}

b. ques{1,50}

c. ques{2,25}

d. ques{3,0}

Correct answer: c

This two-dimensional array would consist of three rows of 25 elements. The

first row would contain q1 through q25, the second row would start with q26

and end with q50, and the third row would start with q51 and end with q75.

临床研究SAS高级编程 81

Rotating Data Sets (1)

We've seen a number of uses for arrays, including

creating variables, performing repetitive calculations, and

performing table lookups. We can also use arrays for

rotating (transposing) a SAS data set.

When we rotate a SAS data set, we change variables to

observations or observations to variables.

临床研究SAS高级编程 82

Rotating Data Sets (2)

Example:

Rotate the Finance.Funddrive

data set to create four output

observations from each input
observation.

临床研究SAS高级编程 83

Rotating Data Sets (3)

Example:

The following program rotates the data set and lists the

first 16 observations in the new data set.

data work.rotate(drop=qtr1-qtr4);

 set finance.funddrive;

 array contrib{4} qtr1-qtr4;

 do Qtr=1 to 4;

 Amount=contrib{qtr};

 output;

 end;

run;

proc print data=rotate(obs=16)

noobs;

run;

临床研究SAS高级编程 84

Points to Remember (1)

 A SAS array exists only for the duration of the DATA

step.

 Do not give an array the same name as a variable in

the same DATA step. Also, avoid using the name of a SAS

function as an array name—the array will be correct, but

you won't be able to use the function in the same DATA

step, and a warning will be written to the SAS log.

临床研究SAS高级编程 85

Points to Remember (2)

You can indicate the dimension of a one-dimensional

array with an asterisk (*) as long as you specify the

elements of the array.

 When referencing array elements, be careful not to

confuse variable names with the array references. WgtDiff1

through WgtDiff5 is not the same as WgtDiff{1} through

WgtDiff{5}.

临床研究SAS高级编程 86

This section introduces some array applications in

Data manipulations from data search - Example 1

Count consecutive days - Example 2

LOCF - Example 3

Find and replace - Example 4

Shift - Example 5

 Leading to a more complicated efficient process.

Applications - Examples

临床研究SAS高级编程 87

The example is to find on which day the maximum

efficacy is reached.

The algorithm is to compare the target value against an

array and perform an action if the target value is found in the

array.

Example 1 - Search Specified Value

SUBJECT DAY1 DAY2 DAY3 DAY4 TMAX

 101 0.0 0.0 0.0 0.0 .

 102 . 0.5 0.5 0.0 2

 106 0.5 0.0 0.0 0.0 1

 107 0.5 2.0 0.5 2.0 2

 111 1.0 3.0 2.0 2.5 2

 112 2.0 3.0 2.5 3.5 4

data pd2;

 set pd1;

 array days[4] day1-day4;

 maxscore=max (of days [*]);

 do i=1 to dim(days);

 if maxscore >0 and

 days[i]=maxscore then do;

 tmax=i;

 return;

 end;

 end;

 drop i maxscore;

run;

临床研究SAS高级编程 88

We check to see whether a subject has

experienced night awakening for more than

3 consecutive days.

From the DIARY data set and program

below, we can easily list the subjects and

their consecutive days along with start date

and stop date by using array.

Example 2 - Count Consecutive Days (1)

SUBJID DATE DATECNT

 1 25MAR2004 1

 1 26MAR2004 2

 1 27MAR2004 3

 1 28MAR2004 4

 1 29MAR2004 5

 2 26MAR2004 1

 2 27MAR2004 2

 2 29MAR2004 3

 3 26MAR2004 1

 3 27MAR2004 2

 3 28MAR2004 3

 3 02APR2004 4

 4 02APR2004 1

Target dataset

SUBJID count f_date l_date

 1 5 25MAR2004 29MAR2004

 3 3 26MAR2004 28MAR2004

临床研究SAS高级编程 89

Example 2 - Count Consecutive Days (2)

proc transpose data=diary prefix=_dat out=temp1;

 by subjid;

 var date;

run;

Temp1

SUBJID _NAME_ _dat1 _dat2 _dat3 _dat4 _dat5

 1 date 25MAR2004 26MAR2004 27MAR2004 28MAR2004 29MAR2004

 2 date 26MAR2004 27MAR2004 29MAR2004 . .

 3 date 26MAR2004 27MAR2004 28MAR2004 02APR2004 .

 4 date 02APR2004

Step1. Transpose

临床研究SAS高级编程 90

Example 2 - Count Consecutive Days (3)

data temp2

 (keep=subjid flag count I rename=(i=datecnt));

 set temp1 ;

 array dates {*} _dat: dummy ;

 retain flag count 1;

 do i=1 to dim(dates)-1;

 if dates[i]^=. then do;

 if dates[i] = dates[i+1]-1 then do;

 output; count=count + 1;

 end;

 else do;

 output; flag =flag + 1; count=1;

 end;

 end;

 end;

run;

Step2. Count Consecutive Days using Array
 Temp2

SUBJID flag count datecnt

 1 1 1 1

 1 1 2 2

 1 1 3 3

 1 1 4 4

 1 1 5 5

 2 2 1 1

 2 2 2 2

 2 3 1 3

 3 4 1 1

 3 4 2 2

 3 4 3 3

 3 5 1 4

 4 6 1 1

临床研究SAS高级编程 91

Example 2 - Count Consecutive Days (4)

data temp3;

 merge temp2 diary;

 by subjid datecnt;

run;

Temp3

SUBJID flag count datecnt date

 1 1 1 1 25MAR2004

 1 1 2 2 26MAR2004

 1 1 3 3 27MAR2004

 1 1 4 4 28MAR2004

 1 1 5 5 29MAR2004

 2 2 1 1 26MAR2004

 2 2 2 2 27MAR2004

 2 3 1 3 29MAR2004

 3 4 1 1 26MAR2004

 3 4 2 2 27MAR2004

 3 4 3 3 28MAR2004

 3 5 1 4 02APR2004

 4 6 1 1 02APR2004

Step3. Manipulation

临床研究SAS高级编程 92

Example 2 - Count Consecutive Days (5)

data continue (where=(count >=3));

 /*3 consecutive days defined*/

 set temp3;

 by subjid flag;

 retain f_date ;

 if first.flag then f_date=date ;

 if last.flag then do;

 l_date=date ;

 output;

 end;

 keep subjid f_date l_date count;

 format f_date l_date date9. ;

run;

Target dataset

SUBJID count f_date l_date

 1 5 25MAR2004 29MAR2004

 3 3 26MAR2004 28MAR2004

Step3. Manipulation

临床研究SAS高级编程 93

Example 3 - Data LOCF (1)

"LOCF" stands for "Last Observation Carried Forward", it means last non-missing

value carried forward.

In LOCF analyses, when a patient drops out of a trial, the results of the last

evaluation are carried forward as if the he had continued to the completion of the

trial without further change.

Since patients who discontinue medication are regarded as treatment failures,

LOCF analyses are widely considered to provide a more conservative test of drug

effects.

临床研究SAS高级编程 94

Example 3 - Data LOCF (2)

SUBJID TIME1 TIME2 TIME3 TIME4 TIME5 MAKEUP

 1 0.5 0.5 0.0 0.0 0.5 0.5

 2 0.0 0.5 . . 1.5 0.0

 3 0.0 0.0 1.0 . 0.0 0.0

 4 0.0 0.0 0.0 . 0.0 0.0

 5 0.0 0.5 1.5 . 0.5 0.5

 6 0.0 1.0 1.5 0.5 . 1.0

data locf ;

 set score ;

 array time [*] time: ;

 do i=1 to dim(time);

 if time[i]=. then time[i]=time[i-1];

 end;

 drop i makeup;

run;

The following data set called SCORE

will be used as the example.

SUBJID TIME1 TIME2 TIME3 TIME4 TIME5

 1 0.5 0.5 0.0 0.0 0.5

 2 0.0 0.5 0.5 0.5 1.5

 3 0.0 0.0 1.0 1.0 0.0

 4 0.0 0.0 0.0 0.0 0.0

 5 0.0 0.5 1.5 1.5 0.5

 6 0.0 1.0 1.5 0.5 0.5

临床研究SAS高级编程 95

Example 4 - Find and Replace (1)

The array-implemented find& replace is exceptionally powerful and fast.

The algorithm replaces elements referred to by iterator i in the array with

new value when the condition holds, such as to find and replace the

missing data. In some cases, the experiment measurements are not

conducted continuously. They are discrete instead. To test the irritation of

skins to patch or ointment as the example, the skin at different positions

are supposed to be tested in the order of left arm, right arm, back, ... If

one or more points somehow are skipped, the makeup tests would be

done to get those data missed.

临床研究SAS高级编程 96

data replace;

 set score;

 array apps [5] time1- time5;

 do i=1 to dim(apps);

 if apps[i] =. then apps[i]=makeup ;

 end;

 drop i ;

run;

SUBJID TIME1 TIME2 TIME3 TIME4 TIME5 MAKEUP

 1 0.5 0.5 0.0 0.0 0.5 0.5

 2 0.0 0.5 . . 1.5 0.0

 3 0.0 0.0 1.0 . 0.0 0.0

 4 0.0 0.0 0.0 . 0.0 0.0

 5 0.0 0.5 1.5 . 0.5 0.5

 6 0.0 1.0 1.5 0.5 . 1.0

SUBJID TIME1 TIME2 TIME3 TIME4 TIME5 MAKEUP

 1 0.5 0.5 0.0 0.0 0.5 0.5

 2 0.0 0.5 0.0 0.0 1.5 0.0

 3 0.0 0.0 1.0 0.0 0.0 0.0

 4 0.0 0.0 0.0 0.0 0.0 0.0

 5 0.0 0.5 1.5 0.5 0.5 0.5

 6 0.0 1.0 1.5 0.5 1.0 1.0

Example 4 - Find and Replace (2)

临床研究SAS高级编程 97

One subject should undergo a certain times of tests in

some situations, and the time order should be kept, then a

data shift process can be applied with the help of array.

Example 5 - Data Shift (1)

临床研究SAS高级编程 98

data shift;

 set score;

 array apps[*] time: makeup;

 do i = 1 to dim(apps)-1;

 if apps[i] = . then do;

 do j = i to dim(apps)-1;

 apps[j] = apps[j+1];

 end;

 mu='-'||compress(i);

 if apps[i] = . then i=i-1;

 end;

 end;

 drop i j ;

run;

A do loop would be useful if there

are more than one missing data in

the rows.

SUBJID TIME1 TIME2 TIME3 TIME4 TIME5 MAKEUP

 1 0.5 0.5 0.0 0.0 0.5 0.5

 2 0.0 0.5 . . 1.5 0.0

 3 0.0 0.0 1.0 . 0.0 0.0

 4 0.0 0.0 0.0 . 0.0 0.0

 5 0.0 0.5 1.5 . 0.5 0.5

 6 0.0 1.0 1.5 0.5 . 1.0

SUBJID TIME1 TIME2 TIME3 TIME4 TIME5 MAKEUP mu

 1 0.5 0.5 0.0 0.0 0.5 0.5

 2 0.0 0.5 1.5 0.0 0.0 0.0 -3

 3 0.0 0.0 1.0 0.0 0.0 0.0 -4

 4 0.0 0.0 0.0 0.0 0.0 0.0 -4

 5 0.0 0.5 1.5 0.5 0.5 0.5 -4

 6 0.0 1.0 1.5 0.5 1.0 1.0 -5

Example 5 - Data Shift (2)

临床研究SAS高级编程 99

Example 6 - Data Merge (1)

It is often required to merge dose data with

other safety data, such as adverse events,

vital signs, ECG, and lab results, and locate

the dose-related safety profiles. For

example, a patient is given several doses at

certain time points. After each dose, some

adverse events may occur to the patient. We

need to know which adverse event is

associated with which dose. Suppose there

is a dose dataset and an adverse event

dataset.

Dose

SUBJID DOSEN1 DOSEN2 DOSEN3 DOSEN4

1 30JAN1999:08:00:00 06FEB1999:08:00:00 20FEB1999:08:00:00 27FEB1999:08:00:00

2 30JAN1999:08:01:00 06FEB1999:08:01:00 20FEB1999:08:01:00 06MAR1999:08:01:00

3 30JAN1999:08:02:00 06FEB1999:08:02:00 13FEB1999:08:02:00 27FEB1999:08:02:00

AE

SUBJID AE AEDTTM

1 NERVOUSNESS 30JAN1999:06:00:00

1 TACHYCARDIA 30JAN1999:12:15:00

1 NAUSEA 06FEB1999:16:20:00

1 DIZZINESS 20FEB1999:09:20:00

2 HEADACHE 06FEB1999:14:10:00

2 NAUSEA 06FEB1999:17:40:00

临床研究SAS高级编程 100

data dose_ae;

 merge dose ae;

 by subjid;

 array dosen {*} dosen:;

 do i=1 to dim(dosen);

 if dosen[i]^=. and aedttm > dosen[i] then do;

 dosedttm = dosen[i]; dosenum = i;

 end;

 end;

 if dosenum^=.;

 hrpostds = round(((aedttm-dosedttm)/3600), 0.1);

 format dosedttm datetime20.;

 drop i dosen1 - dosen4;

run;

SUBJID AEDTTM AE dosedttm dosenum hrpostds

1 30JAN99:12:15:00 TACHYCARDIA 30JAN1999:08:00:00 1 4.3

1 06FEB99:16:20:00 NAUSEA 06FEB1999:08:00:00 2 8.3

1 20FEB99:09:20:00 DIZZINESS 20FEB1999:08:00:00 3 1.3

2 06FEB99:14:10:00 HEADACHE 06FEB1999:08:01:00 2 6.2

2 06FEB99:17:40:00 NAUSEA 06FEB1999:08:01:00 2 9.7

The final result is shown above, variable

DOSENUM is the order number of doses,

and HRPOSTDS is time in hours after

dosing.

Example 6 - Data Merge (2)

